Artificial Neural Networks - ICANN 2001

Artificial Neural Networks - ICANN 2001
Author: Georg Dorffner
Publisher: Springer
Total Pages: 1248
Release: 2003-05-15
Genre: Computers
ISBN: 3540446680

This book is based on the papers presented at the International Conference on Arti?cial Neural Networks, ICANN 2001, from August 21–25, 2001 at the - enna University of Technology, Austria. The conference is organized by the A- trian Research Institute for Arti?cal Intelligence in cooperation with the Pattern Recognition and Image Processing Group and the Center for Computational - telligence at the Vienna University of Technology. The ICANN conferences were initiated in 1991 and have become the major European meeting in the ?eld of neural networks. From about 300 submitted papers, the program committee selected 171 for publication. Each paper has been reviewed by three program committee m- bers/reviewers. We would like to thank all the members of the program comm- tee and the reviewers for their great e?ort in the reviewing process and helping us to set up a scienti?c program of high quality. In addition, we have invited eight speakers; three of their papers are also included in the proceedings. We would like to thank the European Neural Network Society (ENNS) for their support. We acknowledge the ?nancial support of Austrian Airlines, A- trian Science Foundation (FWF) under the contract SFB 010, Austrian Society ̈ for Arti?cial Intelligence (OGAI), Bank Austria, and the Vienna Convention Bureau. We would like to express our sincere thanks to A. Flexer, W. Horn, K. Hraby, F. Leisch, C. Schittenkopf, and A. Weingessel. The conference and the proceedings would not have been possible without their enormous contri- tion.

Artificial Neural Networks - ICANN 2001

Artificial Neural Networks - ICANN 2001
Author: Georg Dorffner
Publisher: Springer
Total Pages: 1262
Release: 2001-08-13
Genre: Computers
ISBN: 9783540424864

This book is based on the papers presented at the International Conference on Arti?cial Neural Networks, ICANN 2001, from August 21–25, 2001 at the - enna University of Technology, Austria. The conference is organized by the A- trian Research Institute for Arti?cal Intelligence in cooperation with the Pattern Recognition and Image Processing Group and the Center for Computational - telligence at the Vienna University of Technology. The ICANN conferences were initiated in 1991 and have become the major European meeting in the ?eld of neural networks. From about 300 submitted papers, the program committee selected 171 for publication. Each paper has been reviewed by three program committee m- bers/reviewers. We would like to thank all the members of the program comm- tee and the reviewers for their great e?ort in the reviewing process and helping us to set up a scienti?c program of high quality. In addition, we have invited eight speakers; three of their papers are also included in the proceedings. We would like to thank the European Neural Network Society (ENNS) for their support. We acknowledge the ?nancial support of Austrian Airlines, A- trian Science Foundation (FWF) under the contract SFB 010, Austrian Society ̈ for Arti?cial Intelligence (OGAI), Bank Austria, and the Vienna Convention Bureau. We would like to express our sincere thanks to A. Flexer, W. Horn, K. Hraby, F. Leisch, C. Schittenkopf, and A. Weingessel. The conference and the proceedings would not have been possible without their enormous contri- tion.

Artificial Higher Order Neural Networks for Economics and Business

Artificial Higher Order Neural Networks for Economics and Business
Author: Zhang, Ming
Publisher: IGI Global
Total Pages: 542
Release: 2008-07-31
Genre: Computers
ISBN: 1599048981

"This book is the first book to provide opportunities for millions working in economics, accounting, finance and other business areas education on HONNs, the ease of their usage, and directions on how to obtain more accurate application results. It provides significant, informative advancements in the subject and introduces the HONN group models and adaptive HONNs"--Provided by publisher.

Proceedings of the Twenty-fourth Annual Conference of the Cognitive Science Society

Proceedings of the Twenty-fourth Annual Conference of the Cognitive Science Society
Author: Wayne D. Gray
Publisher: Routledge
Total Pages: 2660
Release: 2019-04-24
Genre: Psychology
ISBN: 1317708318

This volume features the complete text of the material presented at the Twenty-Fourth Annual Conference of the Cognitive Science Society. As in previous years, the symposium included an interesting mixture of papers on many topics from researchers with diverse backgrounds and different goals, presenting a multifaceted view of cognitive science. The volume includes all papers, posters, and summaries of symposia presented at this leading conference that brings cognitive scientists together. The 2002 meeting dealt with issues of representing and modeling cognitive processes as they appeal to scholars in all subdisciplines that comprise cognitive science: psychology, computer science, neuroscience, linguistics, and philosophy.

Advances in Natural Computation

Advances in Natural Computation
Author: Lipo Wang
Publisher: Springer
Total Pages: 1360
Release: 2005-08-25
Genre: Computers
ISBN: 3540318534

This book and its sister volumes, i.e., LNCS vols. 3610, 3611, and 3612, are the proceedings of the 1st International Conference on Natural Computation (ICNC 2005), jointly held with the 2nd International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2005, LNAI vols. 3613 and 3614) from 27 to 29 August 2005 in Changsha, Hunan, China.

An Introduction to Universal Artificial Intelligence

An Introduction to Universal Artificial Intelligence
Author: Marcus Hutter
Publisher: CRC Press
Total Pages: 517
Release: 2024-05-28
Genre: Computers
ISBN: 1003821979

An Introduction to Universal Artificial Intelligence provides the formal underpinning of what it means for an agent to act intelligently in an unknown environment. First presented in Universal Algorithmic Intelligence (Hutter, 2000), UAI offers a framework in which virtually all AI problems can be formulated, and a theory of how to solve them. UAI unifies ideas from sequential decision theory, Bayesian inference, and algorithmic information theory to construct AIXI, an optimal reinforcement learning agent that learns to act optimally in unknown environments. AIXI is the theoretical gold standard for intelligent behavior. The book covers both the theoretical and practical aspects of UAI. Bayesian updating can be done efficiently with context tree weighting, and planning can be approximated by sampling with Monte Carlo tree search. It provides algorithms for the reader to implement, and experimental results to compare against. These algorithms are used to approximate AIXI. The book ends with a philosophical discussion of Artificial General Intelligence: Can super-intelligent agents even be constructed? Is it inevitable that they will be constructed, and what are the potential consequences? This text is suitable for late undergraduate students. It provides an extensive chapter to fill in the required mathematics, probability, information, and computability theory background.

Digital Signal Processing with Kernel Methods

Digital Signal Processing with Kernel Methods
Author: Jose Luis Rojo-Alvarez
Publisher: John Wiley & Sons
Total Pages: 665
Release: 2018-02-05
Genre: Technology & Engineering
ISBN: 1118611799

A realistic and comprehensive review of joint approaches to machine learning and signal processing algorithms, with application to communications, multimedia, and biomedical engineering systems Digital Signal Processing with Kernel Methods reviews the milestones in the mixing of classical digital signal processing models and advanced kernel machines statistical learning tools. It explains the fundamental concepts from both fields of machine learning and signal processing so that readers can quickly get up to speed in order to begin developing the concepts and application software in their own research. Digital Signal Processing with Kernel Methods provides a comprehensive overview of kernel methods in signal processing, without restriction to any application field. It also offers example applications and detailed benchmarking experiments with real and synthetic datasets throughout. Readers can find further worked examples with Matlab source code on a website developed by the authors: http://github.com/DSPKM • Presents the necessary basic ideas from both digital signal processing and machine learning concepts • Reviews the state-of-the-art in SVM algorithms for classification and detection problems in the context of signal processing • Surveys advances in kernel signal processing beyond SVM algorithms to present other highly relevant kernel methods for digital signal processing An excellent book for signal processing researchers and practitioners, Digital Signal Processing with Kernel Methods will also appeal to those involved in machine learning and pattern recognition.

Subjective Well-Being and Social Media

Subjective Well-Being and Social Media
Author: Stefano M. Iacus
Publisher: CRC Press
Total Pages: 218
Release: 2021-08-04
Genre: Business & Economics
ISBN: 0429685831

Subjective Well-Being and Social Media shows how, by exploiting the unprecedented amount of information provided by the social networking sites, it is possible to build new composite indicators of subjective well-being. These new social media indicators are complementary to official statistics and surveys, whose data are collected at very low temporary and geographical resolution. The book also explains in full details how to solve the problem of selection bias coming from social media data. Mixing textual analysis, machine learning and time series analysis, the book also shows how to extract both the structural and the temporary components of subjective well-being. Cross-country analysis confirms that well-being is a complex phenomenon that is governed by macroeconomic and health factors, ageing, temporary shocks and cultural and psychological aspects. As an example, the last part of the book focuses on the impact of the prolonged stress due to the COVID-19 pandemic on subjective well-being in both Japan and Italy. Through a data science approach, the results show that a consistent and persistent drop occurred throughout 2020 in the overall level of well-being in both countries. The methodology presented in this book: enables social scientists and policy makers to know what people think about the quality of their own life, minimizing the bias induced by the interaction between the researcher and the observed individuals; being language-free, it allows for comparing the well-being perceived in different linguistic and socio-cultural contexts, disentangling differences due to objective events and life conditions from dissimilarities related to social norms or language specificities; provides a solution to the problem of selection bias in social media data through a systematic approach based on time-space small area estimation models. The book comes also with replication R scripts and data. Stefano M. Iacus is full professor of Statistics at the University of Milan, on leave at the Joint Research Centre of the European Commission. Former R-core member (1999-2017) and R Foundation Member. Giuseppe Porro is full professor of Economic Policy at the University of Insubria. An earlier version of this project was awarded the Italian Institute of Statistics-Google prize for "official statistics and big data".

Adaptive Agents and Multi-Agent Systems II

Adaptive Agents and Multi-Agent Systems II
Author: Daniel Kudenko
Publisher: Springer
Total Pages: 321
Release: 2005-02-18
Genre: Computers
ISBN: 3540322744

Adaptive agents and multi-agent systems is an emerging and exciting interdisciplinary area of research and development involving artificial intelligence, software engineering, and developmental biology, as well as cognitive and social science. This book presents 17 revised and carefully reviewed papers taken from two workshops on the topic as well as 2 invited papers by leading researchers in the area. The papers deal with various aspects of machine learning, adaptation, and evolution in the context of agent systems and autonomous agents.