Artificial Neural Networks for Engineering Applications

Artificial Neural Networks for Engineering Applications
Author: Alma Y Alanis
Publisher: Academic Press
Total Pages: 176
Release: 2019-02-13
Genre: Science
ISBN: 0128182474

Artificial Neural Networks for Engineering Applications presents current trends for the solution of complex engineering problems that cannot be solved through conventional methods. The proposed methodologies can be applied to modeling, pattern recognition, classification, forecasting, estimation, and more. Readers will find different methodologies to solve various problems, including complex nonlinear systems, cellular computational networks, waste water treatment, attack detection on cyber-physical systems, control of UAVs, biomechanical and biomedical systems, time series forecasting, biofuels, and more. Besides the real-time implementations, the book contains all the theory required to use the proposed methodologies for different applications.

Engineering Applications of Neural Networks

Engineering Applications of Neural Networks
Author: Giacomo Boracchi
Publisher: Springer
Total Pages: 739
Release: 2017-07-30
Genre: Computers
ISBN: 3319651722

This book constitutes the refereed proceedings of the 18th International Conference on Engineering Applications of Neural Networks, EANN 2017, held in Athens, Greece, in August 2017. The 40 revised full papers and 5 revised short papers presented were carefully reviewed and selected from 83 submissions. The papers cover the topics of deep learning, convolutional neural networks, image processing, pattern recognition, recommendation systems, machine learning, and applications of Artificial Neural Networks (ANN) applications in engineering, 5G telecommunication networks, and audio signal processing. The volume also includes papers presented at the 6th Mining Humanistic Data Workshop (MHDW 2017) and the 2nd Workshop on 5G-Putting Intelligence to the Network Edge (5G-PINE).

Artificial Neural Networks

Artificial Neural Networks
Author: Kevin L. Priddy
Publisher: SPIE Press
Total Pages: 184
Release: 2005
Genre: Computers
ISBN: 9780819459879

This tutorial text provides the reader with an understanding of artificial neural networks (ANNs), and their application, beginning with the biological systems which inspired them, through the learning methods that have been developed, and the data collection processes, to the many ways ANNs are being used today. The material is presented with a minimum of math (although the mathematical details are included in the appendices for interested readers), and with a maximum of hands-on experience. All specialized terms are included in a glossary. The result is a highly readable text that will teach the engineer the guiding principles necessary to use and apply artificial neural networks.

Engineering Applications of Neural Networks

Engineering Applications of Neural Networks
Author: John Macintyre
Publisher: Springer
Total Pages: 554
Release: 2019-05-14
Genre: Computers
ISBN: 3030202577

This book constitutes the refereed proceedings of the 19th International Conference on Engineering Applications of Neural Networks, EANN 2019, held in Xersonisos, Crete, Greece, in May 2019. The 35 revised full papers and 5 revised short papers presented were carefully reviewed and selected from 72 submissions. The papers are organized in topical sections on AI in energy management - industrial applications; biomedical - bioinformatics modeling; classification - learning; deep learning; deep learning - convolutional ANN; fuzzy - vulnerability - navigation modeling; machine learning modeling - optimization; ML - DL financial modeling; security - anomaly detection; 1st PEINT workshop.

Process Neural Networks

Process Neural Networks
Author: Xingui He
Publisher: Springer Science & Business Media
Total Pages: 240
Release: 2010-07-05
Genre: Computers
ISBN: 3540737626

For the first time, this book sets forth the concept and model for a process neural network. You’ll discover how a process neural network expands the mapping relationship between the input and output of traditional neural networks and greatly enhances the expression capability of artificial neural networks. Detailed illustrations help you visualize information processing flow and the mapping relationship between inputs and outputs.

Artificial Neural Network Applications in Business and Engineering

Artificial Neural Network Applications in Business and Engineering
Author: Do, Quang Hung
Publisher: IGI Global
Total Pages: 275
Release: 2021-01-08
Genre: Computers
ISBN: 1799832406

In today’s modernized market, various disciplines continue to search for universally functional technologies that improve upon traditional processes. Artificial neural networks are a set of statistical modeling tools that are capable of processing nonlinear data with strong accuracy. Due to their complexity, utilizing their potential was previously seen as a challenge. However, with the development of artificial intelligence, this technology has proven to be an effective and efficient problem-solving method. Artificial Neural Network Applications in Business and Engineering is an essential reference source that illustrates recent advancements of artificial neural networks in various professional fields, accompanied by specific case studies and practical examples. Featuring research on topics such as training algorithms, transportation, and computer security, this book is ideally designed for researchers, students, developers, managers, engineers, academicians, industrialists, policymakers, and educators seeking coverage on modern trends in artificial neural networks and their real-world implementations.

Application Of Neural Networks And Other Learning Technologies In Process Engineering

Application Of Neural Networks And Other Learning Technologies In Process Engineering
Author: M A Hussain
Publisher: World Scientific
Total Pages: 423
Release: 2001-04-02
Genre: Computers
ISBN: 178326148X

This book is a follow-up to the IChemE symposium on “Neural Networks and Other Learning Technologies”, held at Imperial College, UK, in May 1999. The interest shown by the participants, especially those from the industry, has been instrumental in producing the book. The papers have been written by contributors of the symposium and experts in this field from around the world. They present all the important aspects of neural network utilisation as well as show the versatility of neural networks in various aspects of process engineering problems — modelling, estimation, control, optimisation and industrial applications.

Applied Artificial Neural Network Methods For Engineers And Scientists: Solving Algebraic Equations

Applied Artificial Neural Network Methods For Engineers And Scientists: Solving Algebraic Equations
Author: Snehashish Chakraverty
Publisher: World Scientific
Total Pages: 192
Release: 2021-01-26
Genre: Computers
ISBN: 9811230226

The aim of this book is to handle different application problems of science and engineering using expert Artificial Neural Network (ANN). As such, the book starts with basics of ANN along with different mathematical preliminaries with respect to algebraic equations. Then it addresses ANN based methods for solving different algebraic equations viz. polynomial equations, diophantine equations, transcendental equations, system of linear and nonlinear equations, eigenvalue problems etc. which are the basic equations to handle the application problems mentioned in the content of the book. Although there exist various methods to handle these problems, but sometimes those may be problem dependent and may fail to give a converge solution with particular discretization. Accordingly, ANN based methods have been addressed here to solve these problems. Detail ANN architecture with step by step procedure and algorithm have been included. Different example problems are solved with respect to various application and mathematical problems. Convergence plots and/or convergence tables of the solutions are depicted to show the efficacy of these methods. It is worth mentioning that various application problems viz. Bakery problem, Power electronics applications, Pole placement, Electrical Network Analysis, Structural engineering problem etc. have been solved using the ANN based methods.

Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference

Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference
Author: Lazaros Iliadis
Publisher: Springer Nature
Total Pages: 630
Release: 2020-05-27
Genre: Computers
ISBN: 3030487911

This book gathers the proceedings of the 21st Engineering Applications of Neural Networks Conference, which is supported by the International Neural Networks Society (INNS). Artificial Intelligence (AI) has been following a unique course, characterized by alternating growth spurts and “AI winters.” Today, AI is an essential component of the fourth industrial revolution and enjoying its heyday. Further, in specific areas, AI is catching up with or even outperforming human beings. This book offers a comprehensive guide to AI in a variety of areas, concentrating on new or hybrid AI algorithmic approaches with robust applications in diverse sectors. One of the advantages of this book is that it includes robust algorithmic approaches and applications in a broad spectrum of scientific fields, namely the use of convolutional neural networks (CNNs), deep learning and LSTM in robotics/machine vision/engineering/image processing/medical systems/the environment; machine learning and meta learning applied to neurobiological modeling/optimization; state-of-the-art hybrid systems; and the algorithmic foundations of artificial neural networks.