Artificial Intelligence Oceanography
Download Artificial Intelligence Oceanography full books in PDF, epub, and Kindle. Read online free Artificial Intelligence Oceanography ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Xiaofeng Li |
Publisher | : Springer Nature |
Total Pages | : 351 |
Release | : 2023-02-03 |
Genre | : Science |
ISBN | : 9811963754 |
This open access book invites readers to learn how to develop artificial intelligence (AI)-based algorithms to perform their research in oceanography. Various examples are exhibited to guide details of how to feed the big ocean data into the AI models to analyze and achieve optimized results. The number of scholars engaged in AI oceanography research will increase exponentially in the next decade. Therefore, this book will serve as a benchmark providing insights for scholars and graduate students interested in oceanography, computer science, and remote sensing.
Author | : William W. Hsieh |
Publisher | : Cambridge University Press |
Total Pages | : 364 |
Release | : 2009-07-30 |
Genre | : Computers |
ISBN | : 0521791928 |
A graduate textbook that provides a unified treatment of machine learning methods and their applications in the environmental sciences.
Author | : |
Publisher | : Academic Press |
Total Pages | : 318 |
Release | : 2020-09-22 |
Genre | : Science |
ISBN | : 0128216840 |
Advances in Geophysics, Volume 61 - Machine Learning and Artificial Intelligence in Geosciences, the latest release in this highly-respected publication in the field of geophysics, contains new chapters on a variety of topics, including a historical review on the development of machine learning, machine learning to investigate fault rupture on various scales, a review on machine learning techniques to describe fractured media, signal augmentation to improve the generalization of deep neural networks, deep generator priors for Bayesian seismic inversion, as well as a review on homogenization for seismology, and more. - Provides high-level reviews of the latest innovations in geophysics - Written by recognized experts in the field - Presents an essential publication for researchers in all fields of geophysics
Author | : Sue Ellen Haupt |
Publisher | : Springer Science & Business Media |
Total Pages | : 418 |
Release | : 2008-11-28 |
Genre | : Science |
ISBN | : 1402091192 |
How can environmental scientists and engineers use the increasing amount of available data to enhance our understanding of planet Earth, its systems and processes? This book describes various potential approaches based on artificial intelligence (AI) techniques, including neural networks, decision trees, genetic algorithms and fuzzy logic. Part I contains a series of tutorials describing the methods and the important considerations in applying them. In Part II, many practical examples illustrate the power of these techniques on actual environmental problems. International experts bring to life ways to apply AI to problems in the environmental sciences. While one culture entwines ideas with a thread, another links them with a red line. Thus, a “red thread“ ties the book together, weaving a tapestry that pictures the ‘natural’ data-driven AI methods in the light of the more traditional modeling techniques, and demonstrating the power of these data-based methods.
Author | : Markus D. Dubber |
Publisher | : Oxford University Press |
Total Pages | : 1000 |
Release | : 2020-06-30 |
Genre | : Law |
ISBN | : 0190067411 |
This volume tackles a quickly-evolving field of inquiry, mapping the existing discourse as part of a general attempt to place current developments in historical context; at the same time, breaking new ground in taking on novel subjects and pursuing fresh approaches. The term "A.I." is used to refer to a broad range of phenomena, from machine learning and data mining to artificial general intelligence. The recent advent of more sophisticated AI systems, which function with partial or full autonomy and are capable of tasks which require learning and 'intelligence', presents difficult ethical questions, and has drawn concerns from many quarters about individual and societal welfare, democratic decision-making, moral agency, and the prevention of harm. This work ranges from explorations of normative constraints on specific applications of machine learning algorithms today-in everyday medical practice, for instance-to reflections on the (potential) status of AI as a form of consciousness with attendant rights and duties and, more generally still, on the conceptual terms and frameworks necessarily to understand tasks requiring intelligence, whether "human" or "A.I."
Author | : Margaret A. Boden |
Publisher | : Oxford University Press |
Total Pages | : 191 |
Release | : 2018-08-13 |
Genre | : Computers |
ISBN | : 0191080071 |
The applications of Artificial Intelligence lie all around us; in our homes, schools and offices, in our cinemas, in art galleries and - not least - on the Internet. The results of Artificial Intelligence have been invaluable to biologists, psychologists, and linguists in helping to understand the processes of memory, learning, and language from a fresh angle. As a concept, Artificial Intelligence has fuelled and sharpened the philosophical debates concerning the nature of the mind, intelligence, and the uniqueness of human beings. In this Very Short Introduction , Margaret A. Boden reviews the philosophical and technological challenges raised by Artificial Intelligence, considering whether programs could ever be really intelligent, creative or even conscious, and shows how the pursuit of Artificial Intelligence has helped us to appreciate how human and animal minds are possible. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Author | : Ambreen Hamadani |
Publisher | : Elsevier |
Total Pages | : 370 |
Release | : 2024-03-15 |
Genre | : Computers |
ISBN | : 0443240000 |
A Biologist’s Guide to Artificial Intelligence: Building the Foundations of Artificial Intelligence and Machine Learning for Achieving Advancements in Life Sciences provides an overview of the basics of Artificial Intelligence for life science biologists. In 14 chapters/sections, readers will find an introduction to Artificial Intelligence from a biologist’s perspective, including coverage of AI in precision medicine, disease detection, and drug development. The book also gives insights into the AI techniques used in biology and the applications of AI in food, and in environmental, evolutionary, agricultural, and bioinformatic sciences. Final chapters cover ethical issues surrounding AI and the impact of AI on the future. This book covers an interdisciplinary area and is therefore is an important subject matter resource and reference for researchers in biology and students pursuing their degrees in all areas of Life Sciences. It is also a useful title for the industry sector and computer scientists who would gain a better understanding of the needs and requirements of biological sciences and thus better tune the algorithms. Helps biologists succeed in understanding the concepts of Artificial Intelligence and machine learning Equips with new data mining strategies an easy interface into the world of Artificial Intelligence Enables researchers to enhance their own sphere of researching Artificial Intelligence
Author | : Debashis De |
Publisher | : Springer Nature |
Total Pages | : 458 |
Release | : |
Genre | : |
ISBN | : 3031646428 |
Author | : Seon Ki Park |
Publisher | : Springer Science & Business Media |
Total Pages | : 736 |
Release | : 2013-05-22 |
Genre | : Science |
ISBN | : 3642350887 |
This book contains the most recent progress in data assimilation in meteorology, oceanography and hydrology including land surface. It spans both theoretical and applicative aspects with various methodologies such as variational, Kalman filter, ensemble, Monte Carlo and artificial intelligence methods. Besides data assimilation, other important topics are also covered including targeting observation, sensitivity analysis, and parameter estimation. The book will be useful to individual researchers as well as graduate students for a reference in the field of data assimilation.
Author | : Zohra Bellahsene |
Publisher | : Springer Science & Business Media |
Total Pages | : 326 |
Release | : 2011-02-14 |
Genre | : Computers |
ISBN | : 3642165184 |
Requiring heterogeneous information systems to cooperate and communicate has now become crucial, especially in application areas like e-business, Web-based mash-ups and the life sciences. Such cooperating systems have to automatically and efficiently match, exchange, transform and integrate large data sets from different sources and of different structure in order to enable seamless data exchange and transformation. The book edited by Bellahsene, Bonifati and Rahm provides an overview of the ways in which the schema and ontology matching and mapping tools have addressed the above requirements and points to the open technical challenges. The contributions from leading experts are structured into three parts: large-scale and knowledge-driven schema matching, quality-driven schema mapping and evolution, and evaluation and tuning of matching tasks. The authors describe the state of the art by discussing the latest achievements such as more effective methods for matching data, mapping transformation verification, adaptation to the context and size of the matching and mapping tasks, mapping-driven schema evolution and merging, and mapping evaluation and tuning. The overall result is a coherent, comprehensive picture of the field. With this book, the editors introduce graduate students and advanced professionals to this exciting field. For researchers, they provide an up-to-date source of reference about schema and ontology matching, schema and ontology evolution, and schema merging.