Artificial Intelligence in Theory and Practice IV

Artificial Intelligence in Theory and Practice IV
Author: Tharam Dillon
Publisher: Springer
Total Pages: 156
Release: 2015-10-02
Genre: Computers
ISBN: 3319252615

This book constitutes the refereed proceedings of the 4th IFIP TC 12 International Conference on Artificial Intelligence, IFIP AI 2015, Held as Part of WCC 2015, in Daejeon, South Korea, in October 2015. The 13 full papers presented were carefully reviewed and selected from 36 submissions. The papers are organized in topical sections on artificial intelligence techniques in biomedicine, artificial intelligence for knowledge management, computational intelligence and algorithms, and intelligent decision support systems.

Artificial Intelligence

Artificial Intelligence
Author: Thomas L. Dean
Publisher: Addison-Wesley Professional
Total Pages: 604
Release: 1995
Genre: Computers
ISBN:

This book provides a detailed understanding of the broad issues in artificial intelligence and a survey of current AI technology. The author delivers broad coverage of innovative representational techniques, including neural networks, image processing and probabilistic reasoning, alongside the traditional methods of symbolic reasoning. The work is intended for students in artificial intelligence, researchers and LISP programmers.

Artificial Intelligence in Medical Imaging

Artificial Intelligence in Medical Imaging
Author: Lia Morra
Publisher: CRC Press
Total Pages: 165
Release: 2019-11-25
Genre: Science
ISBN: 1000753085

Choice Recommended Title, January 2021 This book, written by authors with more than a decade of experience in the design and development of artificial intelligence (AI) systems in medical imaging, will guide readers in the understanding of one of the most exciting fields today. After an introductory description of classical machine learning techniques, the fundamentals of deep learning are explained in a simple yet comprehensive manner. The book then proceeds with a historical perspective of how medical AI developed in time, detailing which applications triumphed and which failed, from the era of computer aided detection systems on to the current cutting-edge applications in deep learning today, which are starting to exhibit on-par performance with clinical experts. In the last section, the book offers a view on the complexity of the validation of artificial intelligence applications for commercial use, describing the recently introduced concept of software as a medical device, as well as good practices and relevant considerations for training and testing machine learning systems for medical use. Open problematics on the validation for public use of systems which by nature continuously evolve through new data is also explored. The book will be of interest to graduate students in medical physics, biomedical engineering and computer science, in addition to researchers and medical professionals operating in the medical imaging domain, who wish to better understand these technologies and the future of the field. Features: An accessible yet detailed overview of the field Explores a hot and growing topic Provides an interdisciplinary perspective

Automated Planning

Automated Planning
Author: Malik Ghallab
Publisher: Elsevier
Total Pages: 665
Release: 2004-05-03
Genre: Business & Economics
ISBN: 1558608567

Publisher Description

Communicating Artificial Intelligence (AI)

Communicating Artificial Intelligence (AI)
Author: Seungahn Nah
Publisher: Routledge
Total Pages: 162
Release: 2020-12-18
Genre: Language Arts & Disciplines
ISBN: 1000326306

Despite increasing scholarly attention to artificial intelligence (AI), studies at the intersection of AI and communication remain ripe for exploration, including investigations of the social, political, cultural, and ethical aspects of machine intelligence, interactions among agents, and social artifacts. This book tackles these unexplored research areas with special emphasis on conditions, components, and consequences of cognitive, attitudinal, affective, and behavioural dimensions toward communication and AI. In doing so, this book epitomizes communication, journalism and media scholarship on AI and its social, political, cultural, and ethical perspectives. Topics vary widely from interactions between humans and robots through news representation of AI and AI-based news credibility to privacy and value toward AI in the public sphere. Contributors from such countries as Brazil, Netherland, South Korea, Spain, and United States discuss important issues and challenges in AI and communication studies. The collection of chapters in the book considers implications for not only theoretical and methodological approaches, but policymakers and practitioners alike. The chapters in this book were originally published as a special issue of Communication Studies.

Foundations of Machine Learning, second edition

Foundations of Machine Learning, second edition
Author: Mehryar Mohri
Publisher: MIT Press
Total Pages: 505
Release: 2018-12-25
Genre: Computers
ISBN: 0262351366

A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms. This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics. Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVMs); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes provide additional material including concise probability review. This second edition offers three new chapters, on model selection, maximum entropy models, and conditional entropy models. New material in the appendixes includes a major section on Fenchel duality, expanded coverage of concentration inequalities, and an entirely new entry on information theory. More than half of the exercises are new to this edition.

Understanding Machine Learning

Understanding Machine Learning
Author: Shai Shalev-Shwartz
Publisher: Cambridge University Press
Total Pages: 415
Release: 2014-05-19
Genre: Computers
ISBN: 1107057132

Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.

Artificial Intelligence in Medicine

Artificial Intelligence in Medicine
Author: David RiaƱo
Publisher: Springer
Total Pages: 431
Release: 2019-06-19
Genre: Computers
ISBN: 303021642X

This book constitutes the refereed proceedings of the 17th Conference on Artificial Intelligence in Medicine, AIME 2019, held in Poznan, Poland, in June 2019. The 22 revised full and 31 short papers presented were carefully reviewed and selected from 134 submissions. The papers are organized in the following topical sections: deep learning; simulation; knowledge representation; probabilistic models; behavior monitoring; clustering, natural language processing, and decision support; feature selection; image processing; general machine learning; and unsupervised learning.

Advances in Artificial Intelligence: From Theory to Practice

Advances in Artificial Intelligence: From Theory to Practice
Author: Salem Benferhat
Publisher: Springer
Total Pages: 485
Release: 2017-06-10
Genre: Computers
ISBN: 3319600451

The two-volume set LNCS 10350 and 10351 constitutes the thoroughly refereed proceedings of the 30th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2017, held in Arras, France, in June 2017. The 70 revised full papers presented together with 45 short papers and 3 invited talks were carefully reviewed and selected from 180 submissions. They are organized in topical sections: constraints, planning, and optimization; data mining and machine learning; sensors, signal processing, and data fusion; recommender systems; decision support systems; knowledge representation and reasoning; navigation, control, and autonome agents; sentiment analysis and social media; games, computer vision; and animation; uncertainty management; graphical models: from theory to applications; anomaly detection; agronomy and artificial intelligence; applications of argumentation; intelligent systems in healthcare and mhealth for health outcomes; and innovative applications of textual analysis based on AI.

Machine Learning in Finance

Machine Learning in Finance
Author: Matthew F. Dixon
Publisher: Springer Nature
Total Pages: 565
Release: 2020-07-01
Genre: Business & Economics
ISBN: 3030410684

This book introduces machine learning methods in finance. It presents a unified treatment of machine learning and various statistical and computational disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial data modeling and decision making. With the trend towards increasing computational resources and larger datasets, machine learning has grown into an important skillset for the finance industry. This book is written for advanced graduate students and academics in financial econometrics, mathematical finance and applied statistics, in addition to quants and data scientists in the field of quantitative finance. Machine Learning in Finance: From Theory to Practice is divided into three parts, each part covering theory and applications. The first presents supervised learning for cross-sectional data from both a Bayesian and frequentist perspective. The more advanced material places a firm emphasis on neural networks, including deep learning, as well as Gaussian processes, with examples in investment management and derivative modeling. The second part presents supervised learning for time series data, arguably the most common data type used in finance with examples in trading, stochastic volatility and fixed income modeling. Finally, the third part presents reinforcement learning and its applications in trading, investment and wealth management. Python code examples are provided to support the readers' understanding of the methodologies and applications. The book also includes more than 80 mathematical and programming exercises, with worked solutions available to instructors. As a bridge to research in this emergent field, the final chapter presents the frontiers of machine learning in finance from a researcher's perspective, highlighting how many well-known concepts in statistical physics are likely to emerge as important methodologies for machine learning in finance.