Artificial Intelligence Driven by Machine Learning and Deep Learning

Artificial Intelligence Driven by Machine Learning and Deep Learning
Author: Bahman Zohuri
Publisher: Nova Science Publishers
Total Pages: 455
Release: 2020
Genre: Computers
ISBN: 9781536183672

"The future of any business from banking, e-commerce, real estate, homeland security, healthcare, marketing, the stock market, manufacturing, education, retail to government organizations depends on the data and analytics capabilities that are built and scaled. The speed of change in technology in recent years has been a real challenge for all businesses. To manage that, a significant number of organizations are exploring the BigData (BD) infrastructure that helps them to take advantage of new opportunities while saving costs. Timely transformation of information is also critical for the survivability of an organization. Having the right information at the right time will enhance not only the knowledge of stakeholders within an organization but also providing them with a tool to make the right decision at the right moment. It is no longer enough to rely on a sampling of information about the organizations' customers. The decision-makers need to get vital insights into the customers' actual behavior, which requires enormous volumes of data to be processed. We believe that Big Data infrastructure is the key to successful Artificial Intelligence (AI) deployments and accurate, unbiased real-time insights. Big data solutions have a direct impact and changing the way the organization needs to work with help from AI and its components ML and DL. In this article, we discuss these topics"--

Artificial Intelligence Driven by Machine Learning and Deep Learning

Artificial Intelligence Driven by Machine Learning and Deep Learning
Author: Bahman Zohuri
Publisher: Nova Science Publishers
Total Pages: 455
Release: 2020
Genre: Artificial intelligence
ISBN: 9781536183146

The future of any business from banking, e-commerce, real estate, homeland security, healthcare, marketing, the stock market, manufacturing, education, retail to government organizations depends on the data and analytics capabilities that are built and scaled. The speed of change in technology in recent years has been a real challenge for all businesses. To manage that, a significant number of organizations are exploring the BigData (BD) infrastructure that helps them to take advantage of new opportunities while saving costs. Timely transformation of information is also critical for the survivability of an organization. Having the right information at the right time will enhance not only the knowledge of stakeholders within an organization but also providing them with a tool to make the right decision at the right moment. It is no longer enough to rely on a sampling of information about the organizations' customers. The decision-makers need to get vital insights into the customers' actual behavior, which requires enormous volumes of data to be processed. We believe that Big Data infrastructure is the key to successful Artificial Intelligence (AI) deployments and accurate, unbiased real-time insights. Big data solutions have a direct impact and changing the way the organization needs to work with help from AI and its components ML and DL. In this article, we discuss these topics.

AI-Driven Intelligent Models for Business Excellence

AI-Driven Intelligent Models for Business Excellence
Author: Samala Nagaraj
Publisher: IGI Global
Total Pages: 293
Release: 2022
Genre: Computers
ISBN: 1668442485

"As digital technology is taking the world in a revolutionary way and business related aspects are getting smarter this book is a potential research source on the Artificial Intelligence-based Business Applications and Intelligence"--

Artificial Intelligence in Healthcare

Artificial Intelligence in Healthcare
Author: Adam Bohr
Publisher: Academic Press
Total Pages: 385
Release: 2020-06-21
Genre: Computers
ISBN: 0128184396

Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data

Artificial Intelligence and Deep Learning in Pathology

Artificial Intelligence and Deep Learning in Pathology
Author: Stanley Cohen
Publisher: Elsevier Health Sciences
Total Pages: 290
Release: 2020-06-02
Genre: Medical
ISBN: 0323675379

Recent advances in computational algorithms, along with the advent of whole slide imaging as a platform for embedding artificial intelligence (AI), are transforming pattern recognition and image interpretation for diagnosis and prognosis. Yet most pathologists have just a passing knowledge of data mining, machine learning, and AI, and little exposure to the vast potential of these powerful new tools for medicine in general and pathology in particular. In Artificial Intelligence and Deep Learning in Pathology, Dr. Stanley Cohen covers the nuts and bolts of all aspects of machine learning, up to and including AI, bringing familiarity and understanding to pathologists at all levels of experience. - Focuses heavily on applications in medicine, especially pathology, making unfamiliar material accessible and avoiding complex mathematics whenever possible. - Covers digital pathology as a platform for primary diagnosis and augmentation via deep learning, whole slide imaging for 2D and 3D analysis, and general principles of image analysis and deep learning. - Discusses and explains recent accomplishments such as algorithms used to diagnose skin cancer from photographs, AI-based platforms developed to identify lesions of the retina, using computer vision to interpret electrocardiograms, identifying mitoses in cancer using learning algorithms vs. signal processing algorithms, and many more.

Deep Learning Applications, Volume 2

Deep Learning Applications, Volume 2
Author: M. Arif Wani
Publisher: Springer
Total Pages: 300
Release: 2020-12-14
Genre: Technology & Engineering
ISBN: 9789811567582

This book presents selected papers from the 18th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2019). It focuses on deep learning networks and their application in domains such as healthcare, security and threat detection, fault diagnosis and accident analysis, and robotic control in industrial environments, and highlights novel ways of using deep neural networks to solve real-world problems. Also offering insights into deep learning architectures and algorithms, it is an essential reference guide for academic researchers, professionals, software engineers in industry, and innovative product developers.

Disrupting Finance

Disrupting Finance
Author: Theo Lynn
Publisher: Springer
Total Pages: 194
Release: 2018-12-06
Genre: Business & Economics
ISBN: 3030023303

This open access Pivot demonstrates how a variety of technologies act as innovation catalysts within the banking and financial services sector. Traditional banks and financial services are under increasing competition from global IT companies such as Google, Apple, Amazon and PayPal whilst facing pressure from investors to reduce costs, increase agility and improve customer retention. Technologies such as blockchain, cloud computing, mobile technologies, big data analytics and social media therefore have perhaps more potential in this industry and area of business than any other. This book defines a fintech ecosystem for the 21st century, providing a state-of-the art review of current literature, suggesting avenues for new research and offering perspectives from business, technology and industry.

Applications of Machine Learning

Applications of Machine Learning
Author: Prashant Johri
Publisher: Springer Nature
Total Pages: 404
Release: 2020-05-04
Genre: Technology & Engineering
ISBN: 9811533571

This book covers applications of machine learning in artificial intelligence. The specific topics covered include human language, heterogeneous and streaming data, unmanned systems, neural information processing, marketing and the social sciences, bioinformatics and robotics, etc. It also provides a broad range of techniques that can be successfully applied and adopted in different areas. Accordingly, the book offers an interesting and insightful read for scholars in the areas of computer vision, speech recognition, healthcare, business, marketing, and bioinformatics.

Artificial Intelligence in Medical Imaging

Artificial Intelligence in Medical Imaging
Author: Erik R. Ranschaert
Publisher: Springer
Total Pages: 369
Release: 2019-01-29
Genre: Medical
ISBN: 3319948784

This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.

Deep Learning

Deep Learning
Author: John D. Kelleher
Publisher: MIT Press
Total Pages: 298
Release: 2019-09-10
Genre: Computers
ISBN: 0262537559

An accessible introduction to the artificial intelligence technology that enables computer vision, speech recognition, machine translation, and driverless cars. Deep learning is an artificial intelligence technology that enables computer vision, speech recognition in mobile phones, machine translation, AI games, driverless cars, and other applications. When we use consumer products from Google, Microsoft, Facebook, Apple, or Baidu, we are often interacting with a deep learning system. In this volume in the MIT Press Essential Knowledge series, computer scientist John Kelleher offers an accessible and concise but comprehensive introduction to the fundamental technology at the heart of the artificial intelligence revolution. Kelleher explains that deep learning enables data-driven decisions by identifying and extracting patterns from large datasets; its ability to learn from complex data makes deep learning ideally suited to take advantage of the rapid growth in big data and computational power. Kelleher also explains some of the basic concepts in deep learning, presents a history of advances in the field, and discusses the current state of the art. He describes the most important deep learning architectures, including autoencoders, recurrent neural networks, and long short-term networks, as well as such recent developments as Generative Adversarial Networks and capsule networks. He also provides a comprehensive (and comprehensible) introduction to the two fundamental algorithms in deep learning: gradient descent and backpropagation. Finally, Kelleher considers the future of deep learning—major trends, possible developments, and significant challenges.