Artificial Intelligence Development Stage
Download Artificial Intelligence Development Stage full books in PDF, epub, and Kindle. Read online free Artificial Intelligence Development Stage ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Amir Husain |
Publisher | : Simon and Schuster |
Total Pages | : 224 |
Release | : 2017-11-21 |
Genre | : Computers |
ISBN | : 1501144677 |
Explores universal questions about humanity's capacity for living and thriving in the coming age of sentient machines and AI, examining debates from opposing perspectives while discussing emerging intellectual diversity and its potential role in enabling a positive life.
Author | : National Research Council |
Publisher | : National Academies Press |
Total Pages | : 300 |
Release | : 1999-02-11 |
Genre | : Computers |
ISBN | : 0309062780 |
The past 50 years have witnessed a revolution in computing and related communications technologies. The contributions of industry and university researchers to this revolution are manifest; less widely recognized is the major role the federal government played in launching the computing revolution and sustaining its momentum. Funding a Revolution examines the history of computing since World War II to elucidate the federal government's role in funding computing research, supporting the education of computer scientists and engineers, and equipping university research labs. It reviews the economic rationale for government support of research, characterizes federal support for computing research, and summarizes key historical advances in which government-sponsored research played an important role. Funding a Revolution contains a series of case studies in relational databases, the Internet, theoretical computer science, artificial intelligence, and virtual reality that demonstrate the complex interactions among government, universities, and industry that have driven the field. It offers a series of lessons that identify factors contributing to the success of the nation's computing enterprise and the government's role within it.
Author | : Roland T. Rust |
Publisher | : Springer Nature |
Total Pages | : 185 |
Release | : 2021-01-19 |
Genre | : Business & Economics |
ISBN | : 3030529770 |
As machines are trained to “think,” many tasks that previously required human intelligence are becoming automated through artificial intelligence. However, it is more difficult to automate emotional intelligence, and this is where the human worker’s competitive advantage over machines currently lies. This book explores the impact of AI on everyday life, looking into workers’ adaptation to these changes, the ways in which managers can change the nature of jobs in light of AI developments, and the potential for humans and AI to continue working together. The book argues that AI is rapidly assuming a larger share of thinking tasks, leaving human intelligence to focus on feeling. The result is the “Feeling Economy,” in which both employees and consumers emphasize feeling to an unprecedented extent, with thinking tasks largely delegated to AI. The book shows both theoretical and empirical evidence that this shift is well underway. Further, it explores the effect of the Feeling Economy on our everyday lives in the areas such as shopping, politics, and education. Specifically, it argues that in this new economy, through empathy and people skills, women may gain an unprecedented degree of power and influence. This book will appeal to readers across disciplines interested in understanding the impact of AI on business and our daily lives. It represents a bold, potentially controversial attempt to gauge the direction in which society is heading.
Author | : Miltiadis D. Lytras |
Publisher | : MDPI |
Total Pages | : 278 |
Release | : 2021-09-10 |
Genre | : Technology & Engineering |
ISBN | : 303651161X |
Artificial intelligence (AI) is a subject garnering increasing attention in both academia and the industry today. The understanding is that AI-enhanced methods and techniques create a variety of opportunities related to improving basic and advanced business functions, including production processes, logistics, financial management and others. As this collection demonstrates, AI-enhanced tools and methods tend to offer more precise results in the fields of engineering, financial accounting, tourism, air-pollution management and many more. The objective of this collection is to bring these topics together to offer the reader a useful primer on how AI-enhanced tools and applications can be of use in today’s world. In the context of the frequently fearful, skeptical and emotion-laden debates on AI and its value added, this volume promotes a positive perspective on AI and its impact on society. AI is a part of a broader ecosystem of sophisticated tools, techniques and technologies, and therefore, it is not immune to developments in that ecosystem. It is thus imperative that inter- and multidisciplinary research on AI and its ecosystem is encouraged. This collection contributes to that.
Author | : Adam Bohr |
Publisher | : Academic Press |
Total Pages | : 385 |
Release | : 2020-06-21 |
Genre | : Computers |
ISBN | : 0128184396 |
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Author | : Raj Venkatesan |
Publisher | : Stanford University Press |
Total Pages | : 295 |
Release | : 2021-05-18 |
Genre | : Business & Economics |
ISBN | : 1503628043 |
This book offers a direct, actionable plan CMOs can use to map out initiatives that are properly sequenced and designed for success—regardless of where their marketing organization is in the process. The authors pose the following critical questions to marketers: (1) How should modern marketers be thinking about artificial intelligence and machine learning? and (2) How should marketers be developing a strategy and plan to implement AI into their marketing toolkit? The opening chapters provide marketing leaders with an overview of what exactly AI is and how is it different than traditional computer science approaches. Venkatesan and Lecinski, then, propose a best-practice, five-stage framework for implementing what they term the "AI Marketing Canvas." Their approach is based on research and interviews they conducted with leading marketers, and offers many tangible examples of what brands are doing at each stage of the AI Marketing Canvas. By way of guidance, Venkatesan and Lecinski provide examples of brands—including Google, Lyft, Ancestry.com, and Coca-Cola—that have successfully woven AI into their marketing strategies. The book concludes with a discussion of important implications for marketing leaders—for your team and culture.
Author | : Monique Polit |
Publisher | : IOS Press |
Total Pages | : 330 |
Release | : 2006 |
Genre | : Computers |
ISBN | : 9781586036638 |
The field covered by Artificial Intelligence (AI) is multiform and gathers subjects as various as the engineering of knowledge, the automatic treatment of the language, the training and the systems multiagents, and more. This book focuses on subjects including Machine Learning, Reasoning, Neural Networks, Computer Vision, and Multiagent Systems.
Author | : Tongliang Liu |
Publisher | : Springer Nature |
Total Pages | : 574 |
Release | : 2023-11-26 |
Genre | : Computers |
ISBN | : 9819983886 |
This two-volume set LNAI 14471-14472 constitutes the refereed proceedings of the 36th Australasian Joint Conference on Artificial Intelligence, AI 2023, held in Brisbane, QLD, Australia during November 28 – December 1, 2023. The 23 full papers presented together with 59 short papers were carefully reviewed and selected from 213 submissions. They are organized in the following topics: computer vision; deep learning; machine learning and data mining; optimization; medical AI; knowledge representation and NLP; explainable AI; reinforcement learning; and genetic algorithm.
Author | : Robbie Allen |
Publisher | : Addison-Wesley Professional |
Total Pages | : 99998 |
Release | : 2019-05 |
Genre | : Computers |
ISBN | : 9780135226209 |
Increasingly, business leaders and managers recognize that machine learning offers their companies immense opportunities for competitive advantage. But most discussions of machine learning are intensely technical or academic, and don't offer practical information leaders can use to identify, evaluate, plan, or manage projects. Deploying Machine Learning fills that gap, helping them clarify exactly how machine learning can help them, and collaborate with technologists to actually apply it successfully. You'll learn: What machine learning is, how it compares to "big data" and "artificial intelligence," and why it's suddenly so important What machine learning can do for you: solutions for computer vision, natural language processing, prediction, and more How to use machine learning to solve real business problems -- from reducing costs through improving decision-making and introducing new products Separating hype from reality: identifying pitfalls, limitations, and misconceptions upfront Knowing enough about the technology to work effectively with your technical team Getting the data right: sourcing, collection, governance, security, and culture Solving harder problems: exploring deep learning and other advanced techniques Understanding today's machine learning software and hardware ecosystem Evaluating potential projects, and addressing workforce concerns Staffing your project, acquiring the right tools, and building a workable project plan Interpreting results -- and building an organization that can increasingly learn from data Using machine learning responsibly and ethically Preparing for tomorrow's advances The authors conclude with five chapter-length case studies: image, text, and video analysis, chatbots, and prediction applications. For each, they don't just present results: they also illuminate the process the company undertook, and the pitfalls it overcame along the way.
Author | : David R. Martinez |
Publisher | : MIT Press |
Total Pages | : 581 |
Release | : 2024-06-11 |
Genre | : Computers |
ISBN | : 026237871X |
The first text to take a systems engineering approach to artificial intelligence (AI), from architecture principles to the development and deployment of AI capabilities. Most books on artificial intelligence (AI) focus on a single functional building block, such as machine learning or human-machine teaming. Artificial Intelligence takes a more holistic approach, addressing AI from the view of systems engineering. The book centers on the people-process-technology triad that is critical to successful development of AI products and services. Development starts with an AI design, based on the AI system architecture, and culminates with successful deployment of the AI capabilities. Directed toward AI developers and operational users, this accessibly written volume of the MIT Lincoln Laboratory Series can also serve as a text for undergraduate seniors and graduate-level students and as a reference book. Key features: In-depth look at modern computing technologies Systems engineering description and means to successfully undertake an AI product or service development through deployment Existing methods for applying machine learning operations (MLOps) AI system architecture including a description of each of the AI pipeline building blocks Challenges and approaches to attend to responsible AI in practice Tools to develop a strategic roadmap and techniques to foster an innovative team environment Multiple use cases that stem from the authors’ MIT classes, as well as from AI practitioners, AI project managers, early-career AI team leaders, technical executives, and entrepreneurs Exercises and Jupyter notebook examples