Artificial Intelligence and Machine Learning Fundamentals

Artificial Intelligence and Machine Learning Fundamentals
Author: Zsolt Nagy
Publisher: Packt Publishing Ltd
Total Pages: 330
Release: 2018-12-12
Genre: Computers
ISBN: 1789809207

Create AI applications in Python and lay the foundations for your career in data science Key FeaturesPractical examples that explain key machine learning algorithmsExplore neural networks in detail with interesting examplesMaster core AI concepts with engaging activitiesBook Description Machine learning and neural networks are pillars on which you can build intelligent applications. Artificial Intelligence and Machine Learning Fundamentals begins by introducing you to Python and discussing AI search algorithms. You will cover in-depth mathematical topics, such as regression and classification, illustrated by Python examples. As you make your way through the book, you will progress to advanced AI techniques and concepts, and work on real-life datasets to form decision trees and clusters. You will be introduced to neural networks, a powerful tool based on Moore's law. By the end of this book, you will be confident when it comes to building your own AI applications with your newly acquired skills! What you will learnUnderstand the importance, principles, and fields of AIImplement basic artificial intelligence concepts with PythonApply regression and classification concepts to real-world problemsPerform predictive analysis using decision trees and random forestsCarry out clustering using the k-means and mean shift algorithmsUnderstand the fundamentals of deep learning via practical examplesWho this book is for Artificial Intelligence and Machine Learning Fundamentals is for software developers and data scientists who want to enrich their projects with machine learning. You do not need any prior experience in AI. However, it’s recommended that you have knowledge of high school-level mathematics and at least one programming language (preferably Python).

Machine Learning Fundamentals

Machine Learning Fundamentals
Author: Hyatt Saleh
Publisher: Packt Publishing Ltd
Total Pages: 240
Release: 2018-11-29
Genre: Computers
ISBN: 1789801761

With the flexibility and features of scikit-learn and Python, build machine learning algorithms that optimize the programming process and take application performance to a whole new level Key FeaturesExplore scikit-learn uniform API and its application into any type of modelUnderstand the difference between supervised and unsupervised modelsLearn the usage of machine learning through real-world examplesBook Description As machine learning algorithms become popular, new tools that optimize these algorithms are also developed. Machine Learning Fundamentals explains you how to use the syntax of scikit-learn. You'll study the difference between supervised and unsupervised models, as well as the importance of choosing the appropriate algorithm for each dataset. You'll apply unsupervised clustering algorithms over real-world datasets, to discover patterns and profiles, and explore the process to solve an unsupervised machine learning problem. The focus of the book then shifts to supervised learning algorithms. You'll learn to implement different supervised algorithms and develop neural network structures using the scikit-learn package. You'll also learn how to perform coherent result analysis to improve the performance of the algorithm by tuning hyperparameters. By the end of this book, you will have gain all the skills required to start programming machine learning algorithms. What you will learnUnderstand the importance of data representationGain insights into the differences between supervised and unsupervised modelsExplore data using the Matplotlib libraryStudy popular algorithms, such as k-means, Mean-Shift, and DBSCANMeasure model performance through different metricsImplement a confusion matrix using scikit-learnStudy popular algorithms, such as Naïve-Bayes, Decision Tree, and SVMPerform error analysis to improve the performance of the modelLearn to build a comprehensive machine learning programWho this book is for Machine Learning Fundamentals is designed for developers who are new to the field of machine learning and want to learn how to use the scikit-learn library to develop machine learning algorithms. You must have some knowledge and experience in Python programming, but you do not need any prior knowledge of scikit-learn or machine learning algorithms.

Artificial Intelligence

Artificial Intelligence
Author: Tim D. Washington
Publisher: Independently Published
Total Pages: 48
Release: 2019-02-27
Genre: Computers
ISBN: 9781798191729

What is Artificial Intelligence? Artificial intelligence is a system that tends to simulate intelligent behaviors into computer-controlled machines or digital computers. Artificial Intelligence normally gives a machine the ability to carry out tasks usually associated with intelligent beings like us. Some of these tasks include translating languages, decision-making, visual perception, and speech recognition. In simple terms, artificial intelligence is the capability of any machine to mimic intelligent human behavior. Contrary to what many may think, Artificial intelligence is not a new field of study. In fact, it is older than most millennials reading this guide now. This may make you wonder when the concept of AI really started and from whence it came. As you will learn, machine learning is going to be a big deal in the world of technology. Those who would have started using it to unlock their data will greatly benefit from it even before people realize it exists. As a smart person, you should use this book to familiarize yourself with how machine learning works and then learn how to use it to your advantage. These days, AI is associated with the high-tech companies that dominate the field. Artificial intelligence first started as an academic discipline, but it has since sunken its tendrils into the business sector. Many AI researchers have abandoned academia altogether and flocked to companies like Facebook, Microsoft, Alphabet (Google) Amazon, openAI, and so on. The said companies are all working on different machine learning algorithms and are without a doubt at the forefront of AI research. Those with advanced degrees in AI, computer science, and maths rather join the engineering teams of these companies than stay in the academia. And since they are at the bleeding edge, it is worth listening to what their leaders have to say. Some have been quiet on the concerns about AI, and others like Amazon's Bezos have said that they aren't worried about potential AI threats. But, other visionaries like Bill Gates, Elon Musk, and physicist Stephen Hawking have all voiced their opinions on the potential dangers of Artificial Intelligence. In January 2015, Hawking, Musk, and several other AI experts signed an open letter on artificial intelligence research, calling for increased study on the potential effects on society. The twelve-page document is entitled "Research Priorities for Robust and Beneficial Artificial Intelligence: An Open Letter". It calls for further research on new AI legislation, privacy, ethics research, and several other concerns. As described in the letter, the potential threats of artificial intelligence can fall into multiple dimensions. The good news is that the early stages of AI development that we find ourselves in are malleable. The future is ours to create, provided that proper time and care go into the non-engineering side of AI research and policy. Book Outline: Chapter 1 - Artificial Beings, a Brief History of the Human Psyche Chapter 2 - Top Six AI Myths Chapter 3 - Why AI is the New Business Degree Chapter 4 - Understanding Machine Learning Chapter 5 - Machine Learning Steps Chapter 6 - Robotics Chapter 7 - Natural Language Processing

Fundamentals of Deep Learning

Fundamentals of Deep Learning
Author: Nikhil Buduma
Publisher: "O'Reilly Media, Inc."
Total Pages: 272
Release: 2017-05-25
Genre: Computers
ISBN: 1491925566

With the reinvigoration of neural networks in the 2000s, deep learning has become an extremely active area of research, one that’s paving the way for modern machine learning. In this practical book, author Nikhil Buduma provides examples and clear explanations to guide you through major concepts of this complicated field. Companies such as Google, Microsoft, and Facebook are actively growing in-house deep-learning teams. For the rest of us, however, deep learning is still a pretty complex and difficult subject to grasp. If you’re familiar with Python, and have a background in calculus, along with a basic understanding of machine learning, this book will get you started. Examine the foundations of machine learning and neural networks Learn how to train feed-forward neural networks Use TensorFlow to implement your first neural network Manage problems that arise as you begin to make networks deeper Build neural networks that analyze complex images Perform effective dimensionality reduction using autoencoders Dive deep into sequence analysis to examine language Learn the fundamentals of reinforcement learning

Fundamentals of Artificial Intelligence

Fundamentals of Artificial Intelligence
Author: K.R. Chowdhary
Publisher: Springer Nature
Total Pages: 730
Release: 2020-04-04
Genre: Computers
ISBN: 8132239725

Fundamentals of Artificial Intelligence introduces the foundations of present day AI and provides coverage to recent developments in AI such as Constraint Satisfaction Problems, Adversarial Search and Game Theory, Statistical Learning Theory, Automated Planning, Intelligent Agents, Information Retrieval, Natural Language & Speech Processing, and Machine Vision. The book features a wealth of examples and illustrations, and practical approaches along with the theoretical concepts. It covers all major areas of AI in the domain of recent developments. The book is intended primarily for students who major in computer science at undergraduate and graduate level but will also be of interest as a foundation to researchers in the area of AI.

Fundamentals of Machine Learning for Predictive Data Analytics, second edition

Fundamentals of Machine Learning for Predictive Data Analytics, second edition
Author: John D. Kelleher
Publisher: MIT Press
Total Pages: 853
Release: 2020-10-20
Genre: Computers
ISBN: 0262361108

The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning.

Fundamentals of Machine Learning

Fundamentals of Machine Learning
Author: Thomas P. Trappenberg
Publisher:
Total Pages: 260
Release: 2020
Genre: Computers
ISBN: 0198828047

Interest in machine learning is exploding across the world, both in research and for industrial applications. Fundamentals of Machine Learning provides a brief and accessible introduction to this rapidly growing field, one that will appeal to both students and researchers.

Machine Learning Fundamentals

Machine Learning Fundamentals
Author: Hui Jiang
Publisher: Cambridge University Press
Total Pages: 424
Release: 2021-11-25
Genre: Computers
ISBN: 1108945538

This lucid, accessible introduction to supervised machine learning presents core concepts in a focused and logical way that is easy for beginners to follow. The author assumes basic calculus, linear algebra, probability and statistics but no prior exposure to machine learning. Coverage includes widely used traditional methods such as SVMs, boosted trees, HMMs, and LDAs, plus popular deep learning methods such as convolution neural nets, attention, transformers, and GANs. Organized in a coherent presentation framework that emphasizes the big picture, the text introduces each method clearly and concisely “from scratch” based on the fundamentals. All methods and algorithms are described by a clean and consistent style, with a minimum of unnecessary detail. Numerous case studies and concrete examples demonstrate how the methods can be applied in a variety of contexts.

MATLAB Deep Learning

MATLAB Deep Learning
Author: Phil Kim
Publisher: Apress
Total Pages: 162
Release: 2017-06-15
Genre: Computers
ISBN: 1484228456

Get started with MATLAB for deep learning and AI with this in-depth primer. In this book, you start with machine learning fundamentals, then move on to neural networks, deep learning, and then convolutional neural networks. In a blend of fundamentals and applications, MATLAB Deep Learning employs MATLAB as the underlying programming language and tool for the examples and case studies in this book. With this book, you'll be able to tackle some of today's real world big data, smart bots, and other complex data problems. You’ll see how deep learning is a complex and more intelligent aspect of machine learning for modern smart data analysis and usage. What You'll Learn Use MATLAB for deep learning Discover neural networks and multi-layer neural networks Work with convolution and pooling layers Build a MNIST example with these layers Who This Book Is For Those who want to learn deep learning using MATLAB. Some MATLAB experience may be useful.

Artificial Intelligence with Python

Artificial Intelligence with Python
Author: Prateek Joshi
Publisher: Packt Publishing Ltd
Total Pages: 437
Release: 2017-01-27
Genre: Computers
ISBN: 1786469677

Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.