Artificial Intelligence And Internet Of Things In Smart Farming
Download Artificial Intelligence And Internet Of Things In Smart Farming full books in PDF, epub, and Kindle. Read online free Artificial Intelligence And Internet Of Things In Smart Farming ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Tomar, Pradeep |
Publisher | : IGI Global |
Total Pages | : 400 |
Release | : 2021-01-08 |
Genre | : Technology & Engineering |
ISBN | : 1799817245 |
As technology continues to saturate modern society, agriculture has started to adopt digital computing and data-driven innovations. This emergence of “smart” farming has led to various advancements in the field, including autonomous equipment and the collection of climate, livestock, and plant data. As connectivity and data management continue to revolutionize the farming industry, empirical research is a necessity for understanding these technological developments. Artificial Intelligence and IoT-Based Technologies for Sustainable Farming and Smart Agriculture provides emerging research exploring the theoretical and practical aspects of critical technological solutions within the farming industry. Featuring coverage on a broad range of topics such as crop monitoring, precision livestock farming, and agronomic data processing, this book is ideally designed for farmers, agriculturalists, product managers, farm holders, manufacturers, equipment suppliers, industrialists, governmental professionals, researchers, academicians, and students seeking current research on technological applications within agriculture and farming.
Author | : Jyotir Moy Chatterjee |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 454 |
Release | : 2021-02-08 |
Genre | : Computers |
ISBN | : 3110691280 |
Agriculture is one of the most fundamental human activities. As the farming capacity has expanded, the usage of resources such as land, fertilizer, and water has grown exponentially, and environmental pressures from modern farming techniques have stressed natural landscapes. Still, by some estimates, worldwide food production needs to increase to keep up with global food demand. Machine Learning and the Internet of Things can play a promising role in the Agricultural industry, and help to increase food production while respecting the environment. This book explains how these technologies can be applied, offering many case studies developed in the research world.
Author | : Mohamed Abdel-Basset |
Publisher | : CRC Press |
Total Pages | : 315 |
Release | : 2024-04-01 |
Genre | : Computers |
ISBN | : 1003861857 |
This book provides a broad overview of the areas of artificial intelligence (AI) that can be used for smart farming applications, through either successful engineering or ground-breaking research. Among them, the highlighted tactics are soil management, water management, crop management, livestock management, harvesting, and the integration of Internet of Things (IoT) in smart farming. Artificial Intelligence and Internet of Things in Smart Farming explores different types of smart framing systems for achieving sustainability goals in the real environment. The authors discuss the benefits of smart harvesting systems over traditional harvesting methods, including decreased labor requirements, increased crop yields, increased probabilities of successful harvests, enhanced visibility into crop health, and lower overall harvest and production costs. It explains and describes big data in terms of its potential five dimensions—volume, velocity, variety, veracity, and valuation—within the framework of smart farming. The authors also discuss the recent IoT technologies, such as fifth-generation networks, blockchain, and digital twining, to improve the sustainability and productivity of smart farming systems. The book identifies numerous issues that call for conceptual innovation and has the potential to progress machine learning (ML), resulting in significant impacts. As an illustration, the authors point out how smart farming offers an intriguing field for interpretable ML. The book then delves into the function of AI techniques, such as AI in accelerating the development of nano-enabled agriculture, thereby facilitating safe-by-design nanomaterials for various consumer products and medical applications. This book is for undergraduate students, graduate students, researchers, and AI engineers who pursue a strong understanding of the practical methods of machine learning in the agriculture domain. Practitioners and stakeholders would be able to follow this book to understand the potential of ML in their farming projects and agricultural solutions. Features: • Explores different types of smart framing systems for achieving sustainability goals in the real environment • Explores ML-based analytics such as generative adversarial networks (GAN), autoencoders, computational imaging, and quantum computing • Examines the development of intelligent machines to provide solutions to real-world problems, emphasizing smart farming applications, which are not modeled or are extremely difficult to model mathematically • Emphasizes methods for better managing crops, soils, water, and livestock, urging investors and businesspeople to occupy the existing vacant market area • Discusses AI-empowered Nanotechnology for smart farming
Author | : Latief Ahmad |
Publisher | : CRC Press |
Total Pages | : 214 |
Release | : 2021-03-24 |
Genre | : Technology & Engineering |
ISBN | : 1000364437 |
Agriculture 5.0: Artificial Intelligence, IoT & Machine Learning provides an interdisciplinary, integrative overview of latest development in the domain of smart farming. It shows how the traditional farming practices are being enhanced and modified by automation and introduction of modern scalable technological solutions that cut down on risks, enhance sustainability, and deliver predictive decisions to the grower, in order to make agriculture more productive. An elaborative approach has been used to highlight the applicability and adoption of key technologies and techniques such WSN, IoT, AI and ML in agronomic activities ranging from collection of information, analysing and drawing meaningful insights from the information which is more accurate, timely and reliable.It synthesizes interdisciplinary theory, concepts, definitions, models and findings involved in complex global sustainability problem-solving, making it an essential guide and reference. It includes real-world examples and applications making the book accessible to a broader interdisciplinary readership. This book clarifies hoe the birth of smart and intelligent agriculture is being nurtured and driven by the deployment of tiny sensors or AI/ML enabled UAV’s or low powered Internet of Things setups for the sensing, monitoring, collection, processing and storing of the information over the cloud platforms. This book is ideal for researchers, academics, post-graduate students and practitioners of agricultural universities, who want to embrace new agricultural technologies for Determination of site-specific crop requirements, future farming strategies related to controlling of chemical sprays, yield, price assessments with the help of AI/ML driven intelligent decision support systems and use of agri-robots for sowing and harvesting. The book will be covering and exploring the applications and some case studies of each technology, that have heavily made impact as grand successes. The main aim of the book is to give the readers immense insights into the impact and scope of WSN, IoT, AI and ML in the growth of intelligent digital farming and Agriculture revolution 5.0.The book also focuses on feasibility of precision farming and the problems faced during adoption of precision farming techniques, its potential in India and various policy measures taken all over the world. The reader can find a description of different decision support tools like crop simulation models, their types, and application in PA. Features: Detailed description of the latest tools and technologies available for the Agriculture 5.0. Elaborative information for different type of hardware, platforms and machine learning techniques for use in smart farming. Elucidates various types of predictive modeling techniques available for intelligent and accurate agricultural decision making from real time collected information for site specific precision farming. Information about different type of regulations and policies made by all over the world for the motivation farmers and innovators to invest and adopt the AI and ML enabled tools and farming systems for sustainable production.
Author | : Ajith Abraham |
Publisher | : Academic Press |
Total Pages | : 578 |
Release | : 2021-11-10 |
Genre | : Technology & Engineering |
ISBN | : 0128236957 |
AI, Edge, and IoT Smart Agriculture integrates applications of IoT, edge computing, and data analytics for sustainable agricultural development and introduces Edge of Thing-based data analytics and IoT for predictability of crop, soil, and plant disease occurrence for improved sustainability and increased profitability. The book also addresses precision irrigation, precision horticulture, greenhouse IoT, livestock monitoring, IoT ecosystem for agriculture, mobile robot for precision agriculture, energy monitoring, storage management, and smart farming. The book provides an overarching focus on sustainable environment and sustainable economic development through smart and e-agriculture. Providing a medium for the exchange of expertise and inspiration, contributions from both smart agriculture and data mining researchers around the world provide foundational insights. The book provides practical application opportunities for the resolution of real-world problems, including contributions from the data mining, data analytics, Edge of Things, and cloud research communities working in the farming production sector. The book offers broad coverage of the concepts, themes, and instruments of this important and evolving area of IOT-based agriculture, Edge of Things and cloud-based farming, Greenhouse IOT, mobile agriculture, sustainable agriculture, and big data analytics in agriculture toward smart farming. - Integrates sustainable agriculture, Greenhouse IOT, precision agriculture, crops monitoring, crops controlling to prediction, livestock monitoring, and farm management - Presents data mining techniques for precision agriculture, including weather prediction, plant disease prediction, and decision support for crop and soil selection - Promotes the importance and uses in managing the agro ecosystem for food security - Emphasizes low energy usage options for low cost and environmental sustainability
Author | : Amitava Choudhury |
Publisher | : John Wiley & Sons |
Total Pages | : 304 |
Release | : 2021-03-02 |
Genre | : Computers |
ISBN | : 1119769213 |
Despite the increasing population (the Food and Agriculture Organization of the United Nations estimates 70% more food will be needed in 2050 than was produced in 2006), issues related to food production have yet to be completely addressed. In recent years, Internet of Things technology has begun to be used to address different industrial and technical challenges to meet this growing need. These Agro-IoT tools boost productivity and minimize the pitfalls of traditional farming, which is the backbone of the world's economy. Aided by the IoT, continuous monitoring of fields provides useful and critical information to farmers, ushering in a new era in farming. The IoT can be used as a tool to combat climate change through greenhouse automation; monitor and manage water, soil and crops; increase productivity; control insecticides/pesticides; detect plant diseases; increase the rate of crop sales; cattle monitoring etc. Agricultural Informatics: Automation Using the IoT and Machine Learning focuses on all these topics, including a few case studies, and they give a clear indication as to why these techniques should now be widely adopted by the agriculture and farming industries.
Author | : Govind Singh Patel |
Publisher | : CRC Press |
Total Pages | : 222 |
Release | : 2021-02-10 |
Genre | : Technology & Engineering |
ISBN | : 1000327876 |
This book endeavours to highlight the untapped potential of Smart Agriculture for the innovation and expansion of the agriculture sector. The sector shall make incremental progress as it learns from associations between data over time through Artificial Intelligence, deep learning and Internet of Things applications. The farming industry and Smart agriculture develop from the stringent limits imposed by a farm's location, which in turn has a series of related effects with respect to supply chain management, food availability, biodiversity, farmers' decision-making and insurance, and environmental concerns among others. All of the above-mentioned aspects will derive substantial benefits from the implementation of a data-driven approach under the condition that the systems, tools and techniques to be used have been designed to handle the volume and variety of the data to be gathered. Contributions to this book have been solicited with the goal of uncovering the possibilities of engaging agriculture with equipped and effective profound learning algorithms. Most agricultural research centres are already adopting Internet of Things for the monitoring of a wide range of farm services, and there are significant opportunities for agriculture administration through the effective implementation of Machine Learning, Deep Learning, Big Data and IoT structures.
Author | : Yong He |
Publisher | : Springer Nature |
Total Pages | : 443 |
Release | : 2021-08-02 |
Genre | : Technology & Engineering |
ISBN | : 3030657027 |
Internet of things (IoT) is a new type of network that combines communication technology, expanded applications, and physical devices. Among them, agriculture is one of the most important areas in the application of the IoT technology, which has its unique requirements and integration features. Compared to the information technology in traditional agriculture, the agricultural IoT mainly refers to industrialized production and sustainable development under relatively controllable conditions. Agricultural IoT applies sensors, RFID, visual capture terminals and other types of sensing devices to detect and collect site information, and with broad applications in field planting, facility horticulture, livestock and poultry breeding, aquaculture and agricultural product logistics. It utilizes multiple information transmission channels such as wireless sensor networks, telecommunications networks and the internet to achieve reliable transmission of agricultural information at multiple scales and intelligently processes the acquired, massive information. The goals are to achieve (i) optimal control of agricultural production process, (ii) intelligent electronic trading of agricultural products circulation, and (iii) management of systematic logistics, quality and safety traceability. This book focuses on three levels of agricultural IoT network: information perception technology, information transmission technology and application technology.
Author | : Roshani Raut |
Publisher | : John Wiley & Sons |
Total Pages | : 279 |
Release | : 2022-01-10 |
Genre | : Computers |
ISBN | : 1119793122 |
Health Economics and Financing Encapsulates different case studies where green-IOT and machine learning can be used for making significant progress towards improvising the quality of life and sustainable environment. The Internet of Things (IoT) is an evolving idea which is responsible for connecting billions of devices that acquire, perceive, and communicate data from their surroundings. Because this transmission of data uses significant energy, improving energy efficiency in IOT devices is a significant topic for research. The green internet of things (G-IoT) makes it possible for IoT devices to use less energy since intelligent processing and analysis are fundamental to constructing smart IOT applications with large data sets. Machine learning (ML) algorithms that can predict sustainable energy consumption can be used to prepare guidelines to make IoT device implementation easier. Green Internet of Things and Machine Learning lays the foundation of in-depth analysis of principles of Green-Internet of Things (G-IoT) using machine learning. It outlines various green ICT technologies, explores the potential towards diverse real-time areas, as well as highlighting various challenges and obstacles towards the implementation of G-IoT in the real world. Also, this book provides insights on how the machine learning and green IOT will impact various applications: It covers the Green-IOT and ML-based smart computing, ML techniques for reducing energy consumption in IOT devices, case studies of G-IOT and ML in the agricultural field, smart farming, smart transportation, banking industry and healthcare. Audience The book will be helpful for research scholars and researchers in the fields of computer science and engineering, information technology, electronics and electrical engineering. Industry experts, particularly in R&D divisions, can use this book as their problem-solving guide.
Author | : Annamaria Castrignano |
Publisher | : Academic Press |
Total Pages | : 472 |
Release | : 2020-01-09 |
Genre | : Business & Economics |
ISBN | : 0128183748 |
Agricultural Internet of Things and Decision Support for Smart Farming reveals how a set of key enabling technologies (KET) related to agronomic management, remote and proximal sensing, data mining, decision-making and automation can be efficiently integrated in one system. Chapters cover how KETs enable real-time monitoring of soil conditions, determine real-time, site-specific requirements of crop systems, help develop a decision support system (DSS) aimed at maximizing the efficient use of resources, and provide planning for agronomic inputs differentiated in time and space. This book is ideal for researchers, academics, post-graduate students and practitioners who want to embrace new agricultural technologies. - Presents the science behind smart technologies for agricultural management - Reveals the power of data science and how to extract meaningful insights from big data on what is most suitable based on individual time and space - Proves how advanced technologies used in agriculture practices can become site-specific, locally adaptive, operationally feasible and economically affordable