Approximations And Endomorphism Algebras Of Modules
Download Approximations And Endomorphism Algebras Of Modules full books in PDF, epub, and Kindle. Read online free Approximations And Endomorphism Algebras Of Modules ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Rüdiger Göbel |
Publisher | : Walter de Gruyter |
Total Pages | : 1002 |
Release | : 2012-10-01 |
Genre | : Mathematics |
ISBN | : 3110218119 |
This second, revised and substantially extended edition of Approximations and Endomorphism Algebras of Modules reflects both the depth and the width of recent developments in the area since the first edition appeared in 2006. The new division of the monograph into two volumes roughly corresponds to its two central topics, approximation theory (Volume 1) and realization theorems for modules (Volume 2). It is a widely accepted fact that the category of all modules over a general associative ring is too complex to admit classification. Unless the ring is of finite representation type we must limit attempts at classification to some restricted subcategories of modules. The wild character of the category of all modules, or of one of its subcategories C, is often indicated by the presence of a realization theorem, that is, by the fact that any reasonable algebra is isomorphic to the endomorphism algebra of a module from C. This results in the existence of pathological direct sum decompositions, and these are generally viewed as obstacles to classification. In order to overcome this problem, the approximation theory of modules has been developed. The idea here is to select suitable subcategories C whose modules can be classified, and then to approximate arbitrary modules by those from C. These approximations are neither unique nor functorial in general, but there is a rich supply available appropriate to the requirements of various particular applications. The authors bring the two theories together. The first volume, Approximations, sets the scene in Part I by introducing the main classes of modules relevant here: the S-complete, pure-injective, Mittag-Leffler, and slender modules. Parts II and III of the first volume develop the key methods of approximation theory. Some of the recent applications to the structure of modules are also presented here, notably for tilting, cotilting, Baer, and Mittag-Leffler modules. In the second volume, Predictions, further basic instruments are introduced: the prediction principles, and their applications to proving realization theorems. Moreover, tools are developed there for answering problems motivated in algebraic topology. The authors concentrate on the impossibility of classification for modules over general rings. The wild character of many categories C of modules is documented here by the realization theorems that represent critical R-algebras over commutative rings R as endomorphism algebras of modules from C. The monograph starts from basic facts and gradually develops the theory towards its present frontiers. It is suitable both for graduate students interested in algebra and for experts in module and representation theory.
Author | : Rüdiger Göbel |
Publisher | : de Gruyter |
Total Pages | : 0 |
Release | : 2006 |
Genre | : Approximation theory |
ISBN | : 9783110110791 |
The category of all modules over a general associative ring is too complex to admit any reasonable classification. Thus, unless the ring is of finite representation type, one must limit attempts at classification to some restricted subcategories of modules. The wild character of the category of all modules, or of one of its subcategories C is often indicated by the presence of a realization theorem, that is, by the fact that any reasonable algebra is isomorphic to the endomorphism algebra of a module from C. This results in the existence of pathological direct sum decompositions and these are generally viewed as obstacles to the classification. Realization theorems have thus become important indicators of the non-classification theory of modules. In order to overcome this problem, approximation theory of modules has been developed over the past few decades. The idea here is to select suitable subcategories C whose modules can be classified, and then to approximate arbitrary modules by ones from C. These approximations are neither unique nor functorial in general, but there is always a rich supply available appropriate to the requirements of various particular applications. Thus approximation theory has developed into an important part of the classification theory of modules. In this monograph the two methods are brought together. First the approximation theory of modules is developed and some of its recent applications, notably to infinite dimensional tilting theory, are presented. Then some prediction principles from set theory are introduced and these become the principal tools in the establishment of appropriate realization theorems. The monograph starts from basic facts and gradually develops the theory towards its present frontiers. It is suitable both for graduate students interested in algebra and for experts in module and representation theory.
Author | : Rüdiger Göbel |
Publisher | : ISSN |
Total Pages | : 0 |
Release | : 2012 |
Genre | : Approximation theory |
ISBN | : 9783110218107 |
This monograph- now in its second revised and extended edition- provides a thorough treatment of module theory, a subfield of algebra. The authors develop an approximation theory as well as realization theorems and present some of its recent applications, notably to infinite-dimensional combinatorics and model theory. The book starts from basic facts and gradually develops the theory towards its present frontiers. It is suitable both for graduate students interested in algebra and for experts in module and representation theory.
Author | : Rüdiger Göbel |
Publisher | : |
Total Pages | : 0 |
Release | : 2012 |
Genre | : |
ISBN | : |
Author | : Askar Tuganbaev |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 176 |
Release | : 2019-06-04 |
Genre | : Mathematics |
ISBN | : 3110659824 |
This book offers a comprehensive account of not necessarily commutative arithmetical rings, examining structural and homological properties of modules over arithmetical rings and summarising the interplay between arithmetical rings and other rings, whereas modules with extension properties of submodule endomorphisms are also studied in detail. Graduate students and researchers in ring and module theory will find this book particularly valuable.
Author | : Piotr A. Krylov |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 397 |
Release | : 2018-09-24 |
Genre | : Mathematics |
ISBN | : 3110609851 |
This book provides the first systematic treatment of modules over discrete valuation domains, which play an important role in various areas of algebra, especially in commutative algebra. Many important results representing the state of the art are presented in the text along with interesting open problems. This updated edition presents new approaches on p-adic integers and modules, and on the determinability of a module by its automorphism group. Contents Preliminaries Basic facts Endomorphism rings of divisible and complete modules Representation of rings by endomorphism rings Torsion-free modules Mixed modules Determinity of modules by their endomorphism rings Modules with many endomorphisms or automorphisms
Author | : Manfred Droste |
Publisher | : Springer |
Total Pages | : 493 |
Release | : 2017-06-02 |
Genre | : Mathematics |
ISBN | : 331951718X |
This volume focuses on group theory and model theory with a particular emphasis on the interplay of the two areas. The survey papers provide an overview of the developments across group, module, and model theory while the research papers present the most recent study in those same areas. With introductory sections that make the topics easily accessible to students, the papers in this volume will appeal to beginning graduate students and experienced researchers alike. As a whole, this book offers a cross-section view of the areas in group, module, and model theory, covering topics such as DP-minimal groups, Abelian groups, countable 1-transitive trees, and module approximations. The papers in this book are the proceedings of the conference “New Pathways between Group Theory and Model Theory,” which took place February 1-4, 2016, in Mülheim an der Ruhr, Germany, in honor of the editors’ colleague Rüdiger Göbel. This publication is dedicated to Professor Göbel, who passed away in 2014. He was one of the leading experts in Abelian group theory.
Author | : Piotr A. Krylov |
Publisher | : Walter de Gruyter |
Total Pages | : 369 |
Release | : 2008-08-27 |
Genre | : Mathematics |
ISBN | : 3110205785 |
This book provides the first systematic treatment of modules over discrete valuation domains which plays an important role in various areas of algebra, especially in commutative algebra. Many important results representing the state of the art are presented in the text which is supplemented by exercises and interesting open problems. An important contribution to commutative algebra.
Author | : Ashish K. Srivastava |
Publisher | : Cambridge University Press |
Total Pages | : 235 |
Release | : 2021-03-18 |
Genre | : Mathematics |
ISBN | : 1108949533 |
Provides a unified treatment of the study of modules invariant under automorphisms of their envelopes and covers.
Author | : Pat Goeters |
Publisher | : CRC Press |
Total Pages | : 368 |
Release | : 2006-01-27 |
Genre | : Mathematics |
ISBN | : 9781584885528 |
About the book... In honor of Edgar Enochs and his venerable contributions to a broad range of topics in Algebra, top researchers from around the world gathered at Auburn University to report on their latest work and exchange ideas on some of today's foremost research topics. This carefully edited volume presents the refereed papers of the participants of these talks along with contributions from other veteran researchers who were unable to attend. These papers reflect many of the current topics in Abelian Groups, Commutative Algebra, Commutative Rings, Group Theory, Homological Algebra, Lie Algebras, and Module Theory. Accessible even to beginning mathematicians, many of these articles suggest problems and programs for future study. This volume is an outstanding addition to the literature and a valuable handbook for beginning as well as seasoned researchers in Algebra. about the editors... H. PAT GOETERS completed his undergraduate studies in mathematics and computer science at Southern Connecticut State University and received his Ph.D. in 1984 from the University of Connecticut under the supervision of William J. Wickless. After spending one year in a post-doctoral position in Wesleyan University under the tutelage of James D. Reid, Goeters was invited for a tenure track position in Auburn University by Ulrich F. Albrecht. Soon afterwards, William Ullery and Overtoun Jenda were hired, and so began a lively Algebra group. OVERTOUN M. G. JENDA received his bachelor's degree in Mathematics from Chancellor College, the University of Malawi. He moved to the U.S. 1977 to pursue graduate studies at University of Kentucky, earning his Ph.D. in 1981 under the supervision of Professor Edgar Enochs. He then returned to Chancellor College, where he was a lecturer (assistant professor) for three years. He moved to the University of Botswana for another three-year stint as a lecturer before moving back to the University of Kentucky as a visiting assistant professor in 1987. In 1988, he joined the Algebra research group at Auburn University.