Rational Approximation of Real Functions

Rational Approximation of Real Functions
Author: P. P. Petrushev
Publisher: Cambridge University Press
Total Pages: 388
Release: 2011-03-03
Genre: Mathematics
ISBN: 9780521177405

This 1987 book examines the approximation of real functions by real rational functions. These are a more convenient tool than polynomials, and interest in them was growing, especially after D. Newman's work in the mid-sixties. The authors present the basic achievements of the subject and also discuss some topics from complex rational approximation.

Extrapolation and Rational Approximation

Extrapolation and Rational Approximation
Author: Claude Brezinski
Publisher: Springer Nature
Total Pages: 410
Release: 2020-11-30
Genre: Mathematics
ISBN: 3030584186

This book paints a fresco of the field of extrapolation and rational approximation over the last several centuries to the present through the works of their primary contributors. It can serve as an introduction to the topics covered, including extrapolation methods, Padé approximation, orthogonal polynomials, continued fractions, Lanczos-type methods etc.; it also provides in depth discussion of the many links between these subjects. A highlight of this book is the presentation of the human side of the fields discussed via personal testimonies from contemporary researchers, their anecdotes, and their exclusive remembrances of some of the “actors.” This book shows how research in this domain started and evolved. Biographies of other scholars encountered have also been included. An important branch of mathematics is described in its historical context, opening the way to new developments. After a mathematical introduction, the book contains a precise description of the mathematical landscape of these fields spanning from the 19th century to the first part of the 20th. After an analysis of the works produced after that period (in particular those of Richardson, Aitken, Shanks, Wynn, and others), the most recent developments and applications are reviewed.

Interpolation and Approximation by Rational Functions in the Complex Domain

Interpolation and Approximation by Rational Functions in the Complex Domain
Author: J. L. Walsh
Publisher: American Mathematical Soc.
Total Pages: 418
Release: 1935-12-31
Genre: Mathematics
ISBN: 0821810200

The present work is restricted to the representation of functions in the complex domain, particularly analytic functions, by sequences of polynomials or of more general rational functions whose poles are preassigned, the sequences being defined either by interpolation or by extremal properties (i.e. best approximation). Taylor's series plays a central role in this entire study, for it has properties of both interpolation and best approximation, and serves as a guide throughout the whole treatise. Indeed, almost every result given on the representation of functions is concerned with a generalization either of Taylor's series or of some property of Taylor's series--the title ``Generalizations of Taylor's Series'' would be appropriate.

Approximation of Functions

Approximation of Functions
Author: G. G. Lorentz
Publisher: American Mathematical Soc.
Total Pages: 208
Release: 2005
Genre: Mathematics
ISBN: 9780821840504

This is an easily accessible book on the approximation of functions--simple and without unnecessary details, but complete enough to include the main results of the theory. Except for a few sections, only functions of a real variable are treated. This work can be used as a textbook for graduate or advanced undergraduate courses or for self-study. Included in the volume are Notes at the end of each chapter, Problems, and a selected Bibliography.

Approximation of Functions

Approximation of Functions
Author: G. G. Lorentz
Publisher: American Mathematical Society
Total Pages: 200
Release: 2023-05-08
Genre: Mathematics
ISBN: 1470474948

This is an easily accessible account of the approximation of functions. It is simple and without unnecessary details, but complete enough to include the classical results of the theory. With only a few exceptions, only functions of one real variable are considered. A major theme is the degree of uniform approximation by linear sets of functions. This encompasses approximations by trigonometric polynomials, algebraic polynomials, rational functions, and polynomial operators. The chapter on approximation by operators does not assume extensive knowledge of functional analysis. Two chapters cover the important topics of widths and entropy. The last chapter covers the solution by Kolmogorov and Arnol?d of Hilbert's 13th problem. There are notes at the end of each chapter that give information about important topics not treated in the main text. Each chapter also has a short set of challenging problems, which serve as illustrations.

Approximation Theory and Approximation Practice, Extended Edition

Approximation Theory and Approximation Practice, Extended Edition
Author: Lloyd N. Trefethen
Publisher: SIAM
Total Pages: 377
Release: 2019-01-01
Genre: Mathematics
ISBN: 1611975948

This is a textbook on classical polynomial and rational approximation theory for the twenty-first century. Aimed at advanced undergraduates and graduate students across all of applied mathematics, it uses MATLAB to teach the field’s most important ideas and results. Approximation Theory and Approximation Practice, Extended Edition differs fundamentally from other works on approximation theory in a number of ways: its emphasis is on topics close to numerical algorithms; concepts are illustrated with Chebfun; and each chapter is a PUBLISHable MATLAB M-file, available online. The book centers on theorems and methods for analytic functions, which appear so often in applications, rather than on functions at the edge of discontinuity with their seductive theoretical challenges. Original sources are cited rather than textbooks, and each item in the bibliography is accompanied by an editorial comment. In addition, each chapter has a collection of exercises, which span a wide range from mathematical theory to Chebfun-based numerical experimentation. This textbook is appropriate for advanced undergraduate or graduate students who have an understanding of numerical analysis and complex analysis. It is also appropriate for seasoned mathematicians who use MATLAB.

Shape-Preserving Approximation by Real and Complex Polynomials

Shape-Preserving Approximation by Real and Complex Polynomials
Author: Sorin G. Gal
Publisher: Springer Science & Business Media
Total Pages: 359
Release: 2010-06-09
Genre: Mathematics
ISBN: 0817647031

First comprehensive treatment in book form of shape-preserving approximation by real or complex polynomials in one or several variables Of interest to grad students and researchers in approximation theory, mathematical analysis, numerical analysis, Computer Aided Geometric Design, robotics, data fitting, chemistry, fluid mechanics, and engineering Contains many open problems to spur future research Rich and updated bibliography

Nonlinear Approximation Theory

Nonlinear Approximation Theory
Author: Dietrich Braess
Publisher: Springer Science & Business Media
Total Pages: 305
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642616097

The first investigations of nonlinear approximation problems were made by P.L. Chebyshev in the last century, and the entire theory of uniform approxima tion is strongly connected with his name. By making use of his ideas, the theories of best uniform approximation by rational functions and by polynomials were developed over the years in an almost unified framework. The difference between linear and rational approximation and its implications first became apparent in the 1960's. At roughly the same time other approaches to nonlinear approximation were also developed. The use of new tools, such as nonlinear functional analysis and topological methods, showed that linearization is not sufficient for a complete treatment of nonlinear families. In particular, the application of global analysis and the consideration of flows on the family of approximating functions intro duced ideas which were previously unknown in approximation theory. These were and still are important in many branches of analysis. On the other hand, methods developed for nonlinear approximation prob lems can often be successfully applied to problems which belong to or arise from linear approximation. An important example is the solution of moment problems via rational approximation. Best quadrature formulae or the search for best linear spaces often leads to the consideration of spline functions with free nodes. The most famous problem of this kind, namely best interpolation by poly nomials, is treated in the appendix of this book.