Approximation Theory Spline Functions And Applications
Download Approximation Theory Spline Functions And Applications full books in PDF, epub, and Kindle. Read online free Approximation Theory Spline Functions And Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Angela Kunoth |
Publisher | : Springer |
Total Pages | : 325 |
Release | : 2018-09-20 |
Genre | : Mathematics |
ISBN | : 331994911X |
This book takes readers on a multi-perspective tour through state-of-the-art mathematical developments related to the numerical treatment of PDEs based on splines, and in particular isogeometric methods. A wide variety of research topics are covered, ranging from approximation theory to structured numerical linear algebra. More precisely, the book provides (i) a self-contained introduction to B-splines, with special focus on approximation and hierarchical refinement, (ii) a broad survey of numerical schemes for control problems based on B-splines and B-spline-type wavelets, (iii) an exhaustive description of methods for computing and analyzing the spectral distribution of discretization matrices, and (iv) a detailed overview of the mathematical and implementational aspects of isogeometric analysis. The text is the outcome of a C.I.M.E. summer school held in Cetraro (Italy), July 2017, featuring four prominent lecturers with different theoretical and application perspectives. The book may serve both as a reference and an entry point into further research.
Author | : S.P. Singh |
Publisher | : Springer Science & Business Media |
Total Pages | : 482 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 9401126348 |
These are the Proceedings of the NATO Advanced Study Institute on Approximation Theory, Spline Functions and Applications held in the Hotel villa del Mare, Maratea, Italy between April 28,1991 and May 9, 1991. The principal aim of the Advanced Study Institute, as reflected in these Proceedings, was to bring together recent and up-to-date developments of the subject, and to give directions for future research. Amongst the main topics covered during this Advanced Study Institute is the subject of uni variate and multivariate wavelet decomposition over spline spaces. This is a relatively new area in approximation theory and an increasingly impor tant subject. The work involves key techniques in approximation theory cardinal splines, B-splines, Euler-Frobenius polynomials, spline spaces with non-uniform knot sequences. A number of scientific applications are also highlighted, most notably applications to signal processing and digital im age processing. Developments in the area of approximation of functions examined in the course of our discussions include approximation of periodic phenomena over irregular node distributions, scattered data interpolation, Pade approximants in one and several variables, approximation properties of weighted Chebyshev polynomials, minimax approximations, and the Strang Fix conditions and their relation to radial functions. I express my sincere thanks to the members of the Advisory Commit tee, Professors B. Beauzamy, E. W. Cheney, J. Meinguet, D. Roux, and G. M. Phillips. My sincere appreciation and thanks go to A. Carbone, E. DePas cale, R. Charron, and B.
Author | : Thomas Nall Eden Greville |
Publisher | : |
Total Pages | : 232 |
Release | : 1969 |
Genre | : Approximation theory |
ISBN | : |
Author | : Larry Schumaker |
Publisher | : Cambridge University Press |
Total Pages | : 524 |
Release | : 2007-08-16 |
Genre | : Mathematics |
ISBN | : 1139463438 |
This classic work continues to offer a comprehensive treatment of the theory of univariate and tensor-product splines. It will be of interest to researchers and students working in applied analysis, numerical analysis, computer science, and engineering. The material covered provides the reader with the necessary tools for understanding the many applications of splines in such diverse areas as approximation theory, computer-aided geometric design, curve and surface design and fitting, image processing, numerical solution of differential equations, and increasingly in business and the biosciences. This new edition includes a supplement outlining some of the major advances in the theory since 1981, and some 250 new references. It can be used as the main or supplementary text for courses in splines, approximation theory or numerical analysis.
Author | : Borislav D. Bojanov |
Publisher | : Springer Science & Business Media |
Total Pages | : 287 |
Release | : 2013-06-29 |
Genre | : Mathematics |
ISBN | : 940158169X |
Spline functions entered Approximation Theory as solutions of natural extremal problems. A typical example is the problem of drawing a function curve through given n + k points that has a minimal norm of its k-th derivative. Isolated facts about the functions, now called splines, can be found in the papers of L. Euler, A. Lebesgue, G. Birkhoff, J. Favard, L. Tschakaloff. However, the Theory of Spline Functions has developed in the last 30 years by the effort of dozens of mathematicians. Recent fundamental results on multivariate polynomial interpolation and multivari ate splines have initiated a new wave of theoretical investigations and variety of applications. The purpose of this book is to introduce the reader to the theory of spline functions. The emphasis is given to some new developments, such as the general Birkoff's type interpolation, the extremal properties of the splines and their prominant role in the optimal recovery of functions, multivariate interpolation by polynomials and splines. The material presented is based on the lectures of the authors, given to the students at the University of Sofia and Yerevan University during the last 10 years. Some more elementary results are left as excercises and detailed hints are given.
Author | : Ming-Jun Lai |
Publisher | : Cambridge University Press |
Total Pages | : 28 |
Release | : 2007-04-19 |
Genre | : Mathematics |
ISBN | : 0521875927 |
Comprehensive graduate text offering a detailed mathematical treatment of polynomial splines on triangulations.
Author | : J. H. Ahlberg |
Publisher | : Elsevier |
Total Pages | : 297 |
Release | : 2016-06-03 |
Genre | : Mathematics |
ISBN | : 1483222950 |
The Theory of Splines and Their Applications discusses spline theory, the theory of cubic splines, polynomial splines of higher degree, generalized splines, doubly cubic splines, and two-dimensional generalized splines. The book explains the equations of the spline, procedures for applications of the spline, convergence properties, equal-interval splines, and special formulas for numerical differentiation or integration. The text explores the intrinsic properties of cubic splines including the Hilbert space interpretation, transformations defined by a mesh, and some connections with space technology concerning the payload of a rocket. The book also discusses the theory of polynomial splines of odd degree which can be approached through algebraically (which depends primarily on the examination in detail of the linear system of equations defining the spline). The theory can also be approached intrinsically (which exploits the consequences of basic integral relations existing between functions and approximating spline functions). The text also considers the second integral relation, raising the order of convergence, and the limits on the order of convergence. The book will prove useful for mathematicians, physicist, engineers, or academicians in the field of technology and applied mathematics.
Author | : Klaus Hollig |
Publisher | : SIAM |
Total Pages | : 228 |
Release | : 2015-07-01 |
Genre | : Mathematics |
ISBN | : 1611972949 |
B-splines are fundamental to approximation and data fitting, geometric modeling, automated manufacturing, computer graphics, and numerical simulation. With an emphasis on key results and methods that are most widely used in practice, this textbook provides a unified introduction to the basic components of B-spline theory: approximation methods (mathematics), modeling techniques (engineering), and geometric algorithms (computer science). A supplemental Web site will provide a collection of problems, some with solutions, slides for use in lectures, and programs with demos.
Author | : Nikolaĭ Pavlovich Korneĭchuk |
Publisher | : Cambridge University Press |
Total Pages | : 472 |
Release | : 1991-06-06 |
Genre | : Mathematics |
ISBN | : 9780521382342 |
This book is intended as a self-contained introduction for non-specialists, or as a reference work for experts, to the particular area of approximation theory that is concerned with exact constants. The results apply mainly to extremal problems in approximation theory, which in turn are closely related to numerical analysis and optimization. The book encompasses a wide range of questions and problems: best approximation by polynomials and splines; linear approximation methods, such as spline-approximation; optimal reconstruction of functions and linear functionals. Many of the results are based on deep facts from analysis and function theory, such as duality theory and comparison theorems; these are presented in chapters 1 and 3. In keeping with the author's intention to make the book as self-contained as possible, chapter 2 contains an introduction to polynomial and spline approximation. Chapters 4 to 7 apply the theory to specific classes of functions. The last chapter deals with n-widths and generalises some of the ideas of the earlier chapters. Each chapter concludes with commentary, exercises and extensions of results. A substantial bibliography is included. Many of the results collected here have not been gathered together in book form before, so it will be essential reading for approximation theorists.
Author | : Lloyd N. Trefethen |
Publisher | : SIAM |
Total Pages | : 377 |
Release | : 2019-01-01 |
Genre | : Mathematics |
ISBN | : 1611975948 |
This is a textbook on classical polynomial and rational approximation theory for the twenty-first century. Aimed at advanced undergraduates and graduate students across all of applied mathematics, it uses MATLAB to teach the fields most important ideas and results. Approximation Theory and Approximation Practice, Extended Edition differs fundamentally from other works on approximation theory in a number of ways: its emphasis is on topics close to numerical algorithms; concepts are illustrated with Chebfun; and each chapter is a PUBLISHable MATLAB M-file, available online. The book centers on theorems and methods for analytic functions, which appear so often in applications, rather than on functions at the edge of discontinuity with their seductive theoretical challenges. Original sources are cited rather than textbooks, and each item in the bibliography is accompanied by an editorial comment. In addition, each chapter has a collection of exercises, which span a wide range from mathematical theory to Chebfun-based numerical experimentation. This textbook is appropriate for advanced undergraduate or graduate students who have an understanding of numerical analysis and complex analysis. It is also appropriate for seasoned mathematicians who use MATLAB.