Complexity and Approximation

Complexity and Approximation
Author: Giorgio Ausiello
Publisher: Springer Science & Business Media
Total Pages: 536
Release: 2012-12-06
Genre: Computers
ISBN: 3642584128

This book documents the state of the art in combinatorial optimization, presenting approximate solutions of virtually all relevant classes of NP-hard optimization problems. The wealth of problems, algorithms, results, and techniques make it an indispensible source of reference for professionals. The text smoothly integrates numerous illustrations, examples, and exercises.

Design and Analysis of Approximation Algorithms

Design and Analysis of Approximation Algorithms
Author: Ding-Zhu Du
Publisher: Springer Science & Business Media
Total Pages: 450
Release: 2011-11-18
Genre: Mathematics
ISBN: 1461417015

This book is intended to be used as a textbook for graduate students studying theoretical computer science. It can also be used as a reference book for researchers in the area of design and analysis of approximation algorithms. Design and Analysis of Approximation Algorithms is a graduate course in theoretical computer science taught widely in the universities, both in the United States and abroad. There are, however, very few textbooks available for this course. Among those available in the market, most books follow a problem-oriented format; that is, they collected many important combinatorial optimization problems and their approximation algorithms, and organized them based on the types, or applications, of problems, such as geometric-type problems, algebraic-type problems, etc. Such arrangement of materials is perhaps convenient for a researcher to look for the problems and algorithms related to his/her work, but is difficult for a student to capture the ideas underlying the various algorithms. In the new book proposed here, we follow a more structured, technique-oriented presentation. We organize approximation algorithms into different chapters, based on the design techniques for the algorithms, so that the reader can study approximation algorithms of the same nature together. It helps the reader to better understand the design and analysis techniques for approximation algorithms, and also helps the teacher to present the ideas and techniques of approximation algorithms in a more unified way.

Combinatorial Optimization

Combinatorial Optimization
Author: Bernhard Korte
Publisher: Springer Science & Business Media
Total Pages: 596
Release: 2006-01-27
Genre: Mathematics
ISBN: 3540292977

This well-written textbook on combinatorial optimization puts special emphasis on theoretical results and algorithms with provably good performance, in contrast to heuristics. The book contains complete (but concise) proofs, as well as many deep results, some of which have not appeared in any previous books.

Approximation Algorithms and Semidefinite Programming

Approximation Algorithms and Semidefinite Programming
Author: Bernd Gärtner
Publisher: Springer Science & Business Media
Total Pages: 253
Release: 2012-01-10
Genre: Mathematics
ISBN: 3642220150

Semidefinite programs constitute one of the largest classes of optimization problems that can be solved with reasonable efficiency - both in theory and practice. They play a key role in a variety of research areas, such as combinatorial optimization, approximation algorithms, computational complexity, graph theory, geometry, real algebraic geometry and quantum computing. This book is an introduction to selected aspects of semidefinite programming and its use in approximation algorithms. It covers the basics but also a significant amount of recent and more advanced material. There are many computational problems, such as MAXCUT, for which one cannot reasonably expect to obtain an exact solution efficiently, and in such case, one has to settle for approximate solutions. For MAXCUT and its relatives, exciting recent results suggest that semidefinite programming is probably the ultimate tool. Indeed, assuming the Unique Games Conjecture, a plausible but as yet unproven hypothesis, it was shown that for these problems, known algorithms based on semidefinite programming deliver the best possible approximation ratios among all polynomial-time algorithms. This book follows the “semidefinite side” of these developments, presenting some of the main ideas behind approximation algorithms based on semidefinite programming. It develops the basic theory of semidefinite programming, presents one of the known efficient algorithms in detail, and describes the principles of some others. It also includes applications, focusing on approximation algorithms.

Approximation Algorithms

Approximation Algorithms
Author: Vijay V. Vazirani
Publisher: Springer Science & Business Media
Total Pages: 380
Release: 2013-03-14
Genre: Computers
ISBN: 3662045656

Covering the basic techniques used in the latest research work, the author consolidates progress made so far, including some very recent and promising results, and conveys the beauty and excitement of work in the field. He gives clear, lucid explanations of key results and ideas, with intuitive proofs, and provides critical examples and numerous illustrations to help elucidate the algorithms. Many of the results presented have been simplified and new insights provided. Of interest to theoretical computer scientists, operations researchers, and discrete mathematicians.

Approximation Algorithms for Combinatorial Optimization

Approximation Algorithms for Combinatorial Optimization
Author: Klaus Jansen
Publisher: Springer
Total Pages: 290
Release: 2003-07-31
Genre: Computers
ISBN: 354044436X

This book constitutes the refereed proceedings of the Third International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2000, held in Saarbrcken, Germany in September 2000. The 22 revised full papers presented together with four invited contributions were carefully reviewed and selected from 68 submissions. The topics dealt with include design and analysis of approximation algorithms, inapproximibility results, on-line problems, randomization techniques, average-case analysis, approximation classes, scheduling problems, routing and flow problems, coloring and partitioning, cuts and connectivity, packing and covering, geometric problems, network design, and various applications.

Iterative Methods in Combinatorial Optimization

Iterative Methods in Combinatorial Optimization
Author: Lap Chi Lau
Publisher: Cambridge University Press
Total Pages: 255
Release: 2011-04-18
Genre: Computers
ISBN: 1139499394

With the advent of approximation algorithms for NP-hard combinatorial optimization problems, several techniques from exact optimization such as the primal-dual method have proven their staying power and versatility. This book describes a simple and powerful method that is iterative in essence and similarly useful in a variety of settings for exact and approximate optimization. The authors highlight the commonality and uses of this method to prove a variety of classical polyhedral results on matchings, trees, matroids and flows. The presentation style is elementary enough to be accessible to anyone with exposure to basic linear algebra and graph theory, making the book suitable for introductory courses in combinatorial optimization at the upper undergraduate and beginning graduate levels. Discussions of advanced applications illustrate their potential for future application in research in approximation algorithms.

Approximation Algorithms for Combinatorial Optimization

Approximation Algorithms for Combinatorial Optimization
Author: Klaus Jansen
Publisher: Springer Science & Business Media
Total Pages: 216
Release: 1998-07
Genre: Computers
ISBN: 9783540647362

Computer simulation has become a basic tool in many branches of physics such as statistical physics, particle physics, or materials science. The application of efficient algorithms is at least as important as good hardware in large-scale computation. This volume contains didactic lectures on such techniques based on physical insight. The emphasis is on Monte Carlo methods (introduction, cluster algorithms, reweighting and multihistogram techniques, umbrella sampling), efficient data analysis and optimization methods, but aspects of supercomputing, the solution of stochastic differential equations, and molecular dynamics are also discussed. The book addresses graduate students and researchers in theoretical and computational physics.

Geometric Algorithms and Combinatorial Optimization

Geometric Algorithms and Combinatorial Optimization
Author: Martin Grötschel
Publisher: Springer Science & Business Media
Total Pages: 374
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642978819

Historically, there is a close connection between geometry and optImization. This is illustrated by methods like the gradient method and the simplex method, which are associated with clear geometric pictures. In combinatorial optimization, however, many of the strongest and most frequently used algorithms are based on the discrete structure of the problems: the greedy algorithm, shortest path and alternating path methods, branch-and-bound, etc. In the last several years geometric methods, in particular polyhedral combinatorics, have played a more and more profound role in combinatorial optimization as well. Our book discusses two recent geometric algorithms that have turned out to have particularly interesting consequences in combinatorial optimization, at least from a theoretical point of view. These algorithms are able to utilize the rich body of results in polyhedral combinatorics. The first of these algorithms is the ellipsoid method, developed for nonlinear programming by N. Z. Shor, D. B. Yudin, and A. S. NemirovskiI. It was a great surprise when L. G. Khachiyan showed that this method can be adapted to solve linear programs in polynomial time, thus solving an important open theoretical problem. While the ellipsoid method has not proved to be competitive with the simplex method in practice, it does have some features which make it particularly suited for the purposes of combinatorial optimization. The second algorithm we discuss finds its roots in the classical "geometry of numbers", developed by Minkowski. This method has had traditionally deep applications in number theory, in particular in diophantine approximation.

Combinatorial Optimization

Combinatorial Optimization
Author: Christos H. Papadimitriou
Publisher: Courier Corporation
Total Pages: 530
Release: 2013-04-26
Genre: Mathematics
ISBN: 0486320138

This graduate-level text considers the Soviet ellipsoid algorithm for linear programming; efficient algorithms for network flow, matching, spanning trees, and matroids; the theory of NP-complete problems; local search heuristics for NP-complete problems, more. 1982 edition.