Hyperbolic Functional Differential Inequalities and Applications

Hyperbolic Functional Differential Inequalities and Applications
Author: Z. Kamont
Publisher: Springer Science & Business Media
Total Pages: 318
Release: 2012-12-06
Genre: Mathematics
ISBN: 9401146357

This book is intended as a self-contained exposition of hyperbolic functional dif ferential inequalities and their applications. Its aim is to give a systematic and unified presentation of recent developments of the following problems: (i) functional differential inequalities generated by initial and mixed problems, (ii) existence theory of local and global solutions, (iii) functional integral equations generated by hyperbolic equations, (iv) numerical method of lines for hyperbolic problems, (v) difference methods for initial and initial-boundary value problems. Beside classical solutions, the following classes of weak solutions are treated: Ca ratheodory solutions for quasilinear equations, entropy solutions and viscosity so lutions for nonlinear problems and solutions in the Friedrichs sense for almost linear equations. The theory of difference and differential difference equations ge nerated by original problems is discussed and its applications to the constructions of numerical methods for functional differential problems are presented. The monograph is intended for different groups of scientists. Pure mathemati cians and graduate students will find an advanced theory of functional differential problems. Applied mathematicians and research engineers will find numerical al gorithms for many hyperbolic problems. The classical theory of partial differential inequalities has been described exten sively in the monographs [138, 140, 195, 225). As is well known, they found applica tions in differential problems. The basic examples of such questions are: estimates of solutions of partial equations, estimates of the domain of the existence of solu tions, criteria of uniqueness and estimates of the error of approximate solutions.

Impulsive Differential Equations

Impulsive Differential Equations
Author: N Perestyuk
Publisher: World Scientific
Total Pages: 474
Release: 1995-08-31
Genre: Science
ISBN: 981449982X

Contents:General Description of Impulsive Differential SystemsLinear SystemsStability of SolutionsPeriodic and Almost Periodic Impulsive SystemsIntegral Sets of Impulsive SystemsOptimum Control in Impulsive SystemsAsymptotic Study of Oscillations in Impulsive SystemsA Periodic and Almost Periodic Impulsive SystemsBibliographySubject Index Readership: Researchers in nonlinear science. keywords:Differential Equations with Impulses;Linear Systems;Stability;Periodic and Quasi-Periodic Solutions;Integral Sets;Optimal Control “… lucid … the book … will benefit all who are interested in IDE…” Mathematics Abstracts

Elements of Metric Spaces

Elements of Metric Spaces
Author: Manabendra Nath Mukherjee
Publisher: Academic Publishers
Total Pages: 216
Release: 2010
Genre: Metric spaces
ISBN: 9788189781989

Differential and Difference Equations with Applications

Differential and Difference Equations with Applications
Author: Sandra Pinelas
Publisher: Springer Nature
Total Pages: 754
Release: 2020-10-21
Genre: Mathematics
ISBN: 3030563235

This edited volume gathers selected, peer-reviewed contributions presented at the fourth International Conference on Differential & Difference Equations Applications (ICDDEA), which was held in Lisbon, Portugal, in July 2019. First organized in 2011, the ICDDEA conferences bring together mathematicians from various countries in order to promote cooperation in the field, with a particular focus on applications. The book includes studies on boundary value problems; Markov models; time scales; non-linear difference equations; multi-scale modeling; and myriad applications.