Approximate Commutative Algebra
Download Approximate Commutative Algebra full books in PDF, epub, and Kindle. Read online free Approximate Commutative Algebra ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Lorenzo Robbiano |
Publisher | : Springer Science & Business Media |
Total Pages | : 237 |
Release | : 2009-09-18 |
Genre | : Mathematics |
ISBN | : 3211993142 |
Approximate Commutative Algebra is an emerging field of research which endeavours to bridge the gap between traditional exact Computational Commutative Algebra and approximate numerical computation. The last 50 years have seen enormous progress in the realm of exact Computational Commutative Algebra, and given the importance of polynomials in scientific modelling, it is very natural to want to extend these ideas to handle approximate, empirical data deriving from physical measurements of phenomena in the real world. In this volume nine contributions from established researchers describe various approaches to tackling a variety of problems arising in Approximate Commutative Algebra.
Author | : J. Alajbegovic |
Publisher | : Springer Science & Business Media |
Total Pages | : 339 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 9401127166 |
Various types of approximation theorems are frequently used in general commutative algebra, and they have been found to be useful tools in valuation theory, the theory of Abelian lattice ordered groups, multiplicative ideal theory, etc. Part 1 of this volume is devoted to the investigation of approximation theorems from a classical point of view. The chapters of this part deal with fields and rings, partly ordered groups, and with multirings and d-groups. Part II investigates approximation theorems from a general, categorical point of view. This part is essentially self-contained and requires only a basic knowledge of category theory and first-order logic. For researchers and graduate students of commutative algebra, category theory, as well as applications of logic.
Author | : Hiroaki Hijikata |
Publisher | : Academic Press |
Total Pages | : 417 |
Release | : 2014-05-10 |
Genre | : Mathematics |
ISBN | : 1483265188 |
Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata presents a collection of papers on algebraic geometry and commutative algebra in honor of Masayoshi Nagata for his significant contributions to commutative algebra. Topics covered range from power series rings and rings of invariants of finite linear groups to the convolution algebra of distributions on totally disconnected locally compact groups. The discussion begins with a description of several formulas for enumerating certain types of objects, which may be tabular arrangements of integers called Young tableaux or some types of monomials. The next chapter explains how to establish these enumerative formulas, with emphasis on the role played by transformations of determinantal polynomials and recurrence relations satisfied by them. The book then turns to several applications of the enumerative formulas and universal identity, including including enumerative proofs of the straightening law of Doubilet-Rota-Stein and computations of Hilbert functions of polynomial ideals of certain determinantal loci. Invariant differentials and quaternion extensions are also examined, along with the moduli of Todorov surfaces and the classification problem of embedded lines in characteristic p. This monograph will be a useful resource for practitioners and researchers in algebra and geometry.
Author | : Rüdiger Göbel |
Publisher | : Walter de Gruyter |
Total Pages | : 1002 |
Release | : 2012-10-01 |
Genre | : Mathematics |
ISBN | : 3110218119 |
This second, revised and substantially extended edition of Approximations and Endomorphism Algebras of Modules reflects both the depth and the width of recent developments in the area since the first edition appeared in 2006. The new division of the monograph into two volumes roughly corresponds to its two central topics, approximation theory (Volume 1) and realization theorems for modules (Volume 2). It is a widely accepted fact that the category of all modules over a general associative ring is too complex to admit classification. Unless the ring is of finite representation type we must limit attempts at classification to some restricted subcategories of modules. The wild character of the category of all modules, or of one of its subcategories C, is often indicated by the presence of a realization theorem, that is, by the fact that any reasonable algebra is isomorphic to the endomorphism algebra of a module from C. This results in the existence of pathological direct sum decompositions, and these are generally viewed as obstacles to classification. In order to overcome this problem, the approximation theory of modules has been developed. The idea here is to select suitable subcategories C whose modules can be classified, and then to approximate arbitrary modules by those from C. These approximations are neither unique nor functorial in general, but there is a rich supply available appropriate to the requirements of various particular applications. The authors bring the two theories together. The first volume, Approximations, sets the scene in Part I by introducing the main classes of modules relevant here: the S-complete, pure-injective, Mittag-Leffler, and slender modules. Parts II and III of the first volume develop the key methods of approximation theory. Some of the recent applications to the structure of modules are also presented here, notably for tilting, cotilting, Baer, and Mittag-Leffler modules. In the second volume, Predictions, further basic instruments are introduced: the prediction principles, and their applications to proving realization theorems. Moreover, tools are developed there for answering problems motivated in algebraic topology. The authors concentrate on the impossibility of classification for modules over general rings. The wild character of many categories C of modules is documented here by the realization theorems that represent critical R-algebras over commutative rings R as endomorphism algebras of modules from C. The monograph starts from basic facts and gradually develops the theory towards its present frontiers. It is suitable both for graduate students interested in algebra and for experts in module and representation theory.
Author | : Eberhard Kaniuth |
Publisher | : Springer Science & Business Media |
Total Pages | : 362 |
Release | : 2008-12-16 |
Genre | : Mathematics |
ISBN | : 0387724761 |
Banach algebras are Banach spaces equipped with a continuous multipli- tion. In roughterms,there arethree types ofthem:algebrasofboundedlinear operators on Banach spaces with composition and the operator norm, al- bras consisting of bounded continuous functions on topological spaces with pointwise product and the uniform norm, and algebrasof integrable functions on locally compact groups with convolution as multiplication. These all play a key role in modern analysis. Much of operator theory is best approached from a Banach algebra point of view and many questions in complex analysis (such as approximation by polynomials or rational functions in speci?c - mains) are best understood within the framework of Banach algebras. Also, the study of a locally compact Abelian group is closely related to the study 1 of the group algebra L (G). There exist a rich literature and excellent texts on each single class of Banach algebras, notably on uniform algebras and on operator algebras. This work is intended as a textbook which provides a thorough introduction to the theory of commutative Banach algebras and stresses the applications to commutative harmonic analysis while also touching on uniform algebras. In this sense and purpose the book resembles Larsen’s classical text [75] which shares many themes and has been a valuable resource. However, for advanced graduate students and researchers I have covered several topics which have not been published in books before, including some journal articles.
Author | : Gert-Martin Greuel |
Publisher | : Springer Science & Business Media |
Total Pages | : 601 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3662049635 |
This book can be understood as a model for teaching commutative algebra, and takes into account modern developments such as algorithmic and computational aspects. As soon as a new concept is introduced, the authors show how the concept can be worked on using a computer. The computations are exemplified with the computer algebra system Singular, developed by the authors. Singular is a special system for polynomial computation with many features for global as well as for local commutative algebra and algebraic geometry. The book includes a CD containing Singular as well as the examples and procedures explained in the book.
Author | : Martin Kreuzer |
Publisher | : Springer |
Total Pages | : 332 |
Release | : 2016-09-06 |
Genre | : Mathematics |
ISBN | : 3319436015 |
This book combines, in a novel and general way, an extensive development of the theory of families of commuting matrices with applications to zero-dimensional commutative rings, primary decompositions and polynomial system solving. It integrates the Linear Algebra of the Third Millennium, developed exclusively here, with classical algorithmic and algebraic techniques. Even the experienced reader will be pleasantly surprised to discover new and unexpected aspects in a variety of subjects including eigenvalues and eigenspaces of linear maps, joint eigenspaces of commuting families of endomorphisms, multiplication maps of zero-dimensional affine algebras, computation of primary decompositions and maximal ideals, and solution of polynomial systems. This book completes a trilogy initiated by the uncharacteristically witty books Computational Commutative Algebra 1 and 2 by the same authors. The material treated here is not available in book form, and much of it is not available at all. The authors continue to present it in their lively and humorous style, interspersing core content with funny quotations and tongue-in-cheek explanations.
Author | : Theodore W. Palmer |
Publisher | : Cambridge University Press |
Total Pages | : 820 |
Release | : 1994-03-25 |
Genre | : Mathematics |
ISBN | : 9780521366373 |
This is the first volume of a two volume set that provides a modern account of basic Banach algebra theory including all known results on general Banach *-algebras. This account emphasizes the role of *-algebraic structure and explores the algebraic results that underlie the theory of Banach algebras and *-algebras. The first volume, which contains previously unpublished results, is an independent, self-contained reference on Banach algebra theory. Each topic is treated in the maximum interesting generality within the framework of some class of complex algebras rather than topological algebras. Proofs are presented in complete detail at a level accessible to graduate students. The book contains a wealth of historical comments, background material, examples, particularly in noncommutative harmonic analysis, and an extensive bibliography. Volume II is forthcoming.
Author | : Ezra Miller |
Publisher | : Springer Science & Business Media |
Total Pages | : 442 |
Release | : 2005-06-21 |
Genre | : Mathematics |
ISBN | : 9780387237077 |
Recent developments are covered Contains over 100 figures and 250 exercises Includes complete proofs
Author | : Jean-Pierre Serre |
Publisher | : Springer Science & Business Media |
Total Pages | : 249 |
Release | : 2013-06-29 |
Genre | : Mathematics |
ISBN | : 1475756739 |
The goal of this book is to present local class field theory from the cohomo logical point of view, following the method inaugurated by Hochschild and developed by Artin-Tate. This theory is about extensions-primarily abelian-of "local" (i.e., complete for a discrete valuation) fields with finite residue field. For example, such fields are obtained by completing an algebraic number field; that is one of the aspects of "localisation". The chapters are grouped in "parts". There are three preliminary parts: the first two on the general theory of local fields, the third on group coho mology. Local class field theory, strictly speaking, does not appear until the fourth part. Here is a more precise outline of the contents of these four parts: The first contains basic definitions and results on discrete valuation rings, Dedekind domains (which are their "globalisation") and the completion process. The prerequisite for this part is a knowledge of elementary notions of algebra and topology, which may be found for instance in Bourbaki. The second part is concerned with ramification phenomena (different, discriminant, ramification groups, Artin representation). Just as in the first part, no assumptions are made here about the residue fields. It is in this setting that the "norm" map is studied; I have expressed the results in terms of "additive polynomials" and of "multiplicative polynomials", since using the language of algebraic geometry would have led me too far astray.