Applied Statistical Inference with MINITAB

Applied Statistical Inference with MINITAB
Author: Sally A. Lesik
Publisher: CRC Press
Total Pages: 446
Release: 2009-12-21
Genre: Mathematics
ISBN: 142006584X

Through clear, step-by-step mathematical calculations, Applied Statistical Inference with MINITAB enables students to gain a solid understanding of how to apply statistical techniques using a statistical software program. It focuses on the concepts of confidence intervals, hypothesis testing, validating model assumptions, and power analysis.Illustr

Applied Statistical Inference with MINITAB®, Second Edition

Applied Statistical Inference with MINITAB®, Second Edition
Author: Sally A. Lesik
Publisher: CRC Press
Total Pages: 497
Release: 2018-12-07
Genre: Mathematics
ISBN: 0429816650

Praise for the first edition: "One of my biggest complaints when I teach introductory statistics classes is that it takes me most of the semester to get to the good stuff—inferential statistics. The author manages to do this very quickly....if one were looking for a book that efficiently covers basic statistical methodology and also introduces statistical software [this text] fits the bill." -The American Statistician Applied Statistical Inference with MINITAB, Second Edition distinguishes itself from other introductory statistics textbooks by focusing on the applications of statistics without compromising mathematical rigor. It presents the material in a seamless step-by-step approach so that readers are first introduced to a topic, given the details of the underlying mathematical foundations along with a detailed description of how to interpret the findings, and are shown how to use the statistical software program Minitab to perform the same analysis. Gives readers a solid foundation in how to apply many different statistical methods. MINITAB is fully integrated throughout the text. Includes fully worked out examples so students can easily follow the calculations. Presents many new topics such as one- and two-sample variances, one- and two-sample Poisson rates, and more nonparametric statistics. Features mostly new exercises as well as the addition of Best Practices sections that describe some common pitfalls and provide some practical advice on statistical inference. This book is written to be user-friendly for students and practitioners who are not experts in statistics, but who want to gain a solid understanding of basic statistical inference. This book is oriented towards the practical use of statistics. The examples, discussions, and exercises are based on data and scenarios that are common to students in their everyday lives.

A Concise Introduction to Statistical Inference

A Concise Introduction to Statistical Inference
Author: Jacco Thijssen
Publisher: CRC Press
Total Pages: 231
Release: 2016-11-25
Genre: Mathematics
ISBN: 149875578X

This short book introduces the main ideas of statistical inference in a way that is both user friendly and mathematically sound. Particular emphasis is placed on the common foundation of many models used in practice. In addition, the book focuses on the formulation of appropriate statistical models to study problems in business, economics, and the social sciences, as well as on how to interpret the results from statistical analyses. The book will be useful to students who are interested in rigorous applications of statistics to problems in business, economics and the social sciences, as well as students who have studied statistics in the past, but need a more solid grounding in statistical techniques to further their careers. Jacco Thijssen is professor of finance at the University of York, UK. He holds a PhD in mathematical economics from Tilburg University, Netherlands. His main research interests are in applications of optimal stopping theory, stochastic calculus, and game theory to problems in economics and finance. Professor Thijssen has earned several awards for his statistics teaching.

Introduction to Bayesian Statistics

Introduction to Bayesian Statistics
Author: William M. Bolstad
Publisher: John Wiley & Sons
Total Pages: 608
Release: 2016-09-02
Genre: Mathematics
ISBN: 1118593227

"...this edition is useful and effective in teaching Bayesian inference at both elementary and intermediate levels. It is a well-written book on elementary Bayesian inference, and the material is easily accessible. It is both concise and timely, and provides a good collection of overviews and reviews of important tools used in Bayesian statistical methods." There is a strong upsurge in the use of Bayesian methods in applied statistical analysis, yet most introductory statistics texts only present frequentist methods. Bayesian statistics has many important advantages that students should learn about if they are going into fields where statistics will be used. In this third Edition, four newly-added chapters address topics that reflect the rapid advances in the field of Bayesian statistics. The authors continue to provide a Bayesian treatment of introductory statistical topics, such as scientific data gathering, discrete random variables, robust Bayesian methods, and Bayesian approaches to inference for discrete random variables, binomial proportions, Poisson, and normal means, and simple linear regression. In addition, more advanced topics in the field are presented in four new chapters: Bayesian inference for a normal with unknown mean and variance; Bayesian inference for a Multivariate Normal mean vector; Bayesian inference for the Multiple Linear Regression Model; and Computational Bayesian Statistics including Markov Chain Monte Carlo. The inclusion of these topics will facilitate readers' ability to advance from a minimal understanding of Statistics to the ability to tackle topics in more applied, advanced level books. Minitab macros and R functions are available on the book's related website to assist with chapter exercises. Introduction to Bayesian Statistics, Third Edition also features: Topics including the Joint Likelihood function and inference using independent Jeffreys priors and join conjugate prior The cutting-edge topic of computational Bayesian Statistics in a new chapter, with a unique focus on Markov Chain Monte Carlo methods Exercises throughout the book that have been updated to reflect new applications and the latest software applications Detailed appendices that guide readers through the use of R and Minitab software for Bayesian analysis and Monte Carlo simulations, with all related macros available on the book's website Introduction to Bayesian Statistics, Third Edition is a textbook for upper-undergraduate or first-year graduate level courses on introductory statistics course with a Bayesian emphasis. It can also be used as a reference work for statisticians who require a working knowledge of Bayesian statistics.

Essential Statistical Concepts for the Quality Professional

Essential Statistical Concepts for the Quality Professional
Author: D. H. Stamatis
Publisher: CRC Press
Total Pages: 504
Release: 2012-05-02
Genre: Business & Economics
ISBN: 1439894590

The essence of any root cause analysis in our modern quality thinking is to go beyond the actual problem. This means not only do we have to fix the problem at hand but we also have to identify why the failure occurred and what was the opportunity to apply the appropriate knowledge to avoid the problem in the future. Essential Statistical Concepts f

Basic Statistics and Pharmaceutical Statistical Applications

Basic Statistics and Pharmaceutical Statistical Applications
Author: James E. De Muth
Publisher: CRC Press
Total Pages: 838
Release: 2014-04-28
Genre: Mathematics
ISBN: 1466596740

Building on its best-selling predecessors, Basic Statistics and Pharmaceutical Statistical Applications, Third Edition covers statistical topics most relevant to those in the pharmaceutical industry and pharmacy practice. It focuses on the fundamentals required to understand descriptive and inferential statistics for problem solving. Incorporating

Statistics and Probability with Applications for Engineers and Scientists

Statistics and Probability with Applications for Engineers and Scientists
Author: Bhisham C. Gupta
Publisher: John Wiley & Sons
Total Pages: 896
Release: 2013-04-29
Genre: Mathematics
ISBN: 1118464044

Introducing the tools of statistics and probability from the ground up An understanding of statistical tools is essential for engineers and scientists who often need to deal with data analysis over the course of their work. Statistics and Probability with Applications for Engineers and Scientists walks readers through a wide range of popular statistical techniques, explaining step-by-step how to generate, analyze, and interpret data for diverse applications in engineering and the natural sciences. Unique among books of this kind, Statistics and Probability with Applications for Engineers and Scientists covers descriptive statistics first, then goes on to discuss the fundamentals of probability theory. Along with case studies, examples, and real-world data sets, the book incorporates clear instructions on how to use the statistical packages Minitab® and Microsoft® Office Excel® to analyze various data sets. The book also features: • Detailed discussions on sampling distributions, statistical estimation of population parameters, hypothesis testing, reliability theory, statistical quality control including Phase I and Phase II control charts, and process capability indices • A clear presentation of nonparametric methods and simple and multiple linear regression methods, as well as a brief discussion on logistic regression method • Comprehensive guidance on the design of experiments, including randomized block designs, one- and two-way layout designs, Latin square designs, random effects and mixed effects models, factorial and fractional factorial designs, and response surface methodology • A companion website containing data sets for Minitab and Microsoft Office Excel, as well as JMP ® routines and results Assuming no background in probability and statistics, Statistics and Probability with Applications for Engineers and Scientists features a unique, yet tried-and-true, approach that is ideal for all undergraduate students as well as statistical practitioners who analyze and illustrate real-world data in engineering and the natural sciences.

Applied Linear Regression Models

Applied Linear Regression Models
Author: Michael H. Kutner
Publisher: McGraw-Hill/Irwin
Total Pages: 701
Release: 2003-09
Genre: Mathematics
ISBN: 9780072955675

Kutner, Neter, Nachtsheim, Wasserman, Applied Linear Regression Models, 4/e (ALRM4e) is the long established leading authoritative text and reference on regression (previously Neter was lead author.) For students in most any discipline where statistical analysis or interpretation is used, ALRM has served as the industry standard. The text includes brief introductory and review material, and then proceeds through regression and modeling. All topics are presented in a precise and clear style supported with solved examples, numbered formulae, graphic illustrations, and "Notes" to provide depth and statistical accuracy and precision. Applications used within the text and the hallmark problems, exercises, and projects are drawn from virtually all disciplines and fields providing motivation for students in any discipline. ALRM 4e provides an increased use of computing and graphical analysis throughout, without sacrificing concepts or rigor by using larger data sets in examples and exercises, and where methods can be automated within software without loss of understanding, it is so done.

Applied Statistical Methods in Agriculture, Health and Life Sciences

Applied Statistical Methods in Agriculture, Health and Life Sciences
Author: Bayo Lawal
Publisher: Springer
Total Pages: 816
Release: 2014-09-15
Genre: Medical
ISBN: 3319055550

This textbook teaches crucial statistical methods to answer research questions using a unique range of statistical software programs, including MINITAB and R. This textbook is developed for undergraduate students in agriculture, nursing, biology and biomedical research. Graduate students will also find it to be a useful way to refresh their statistics skills and to reference software options. The unique combination of examples is approached using MINITAB and R for their individual strengths. Subjects covered include among others data description, probability distributions, experimental design, regression analysis, randomized design and biological assay. Unlike other biostatistics textbooks, this text also includes outliers, influential observations in regression and an introduction to survival analysis. Material is taken from the author's extensive teaching and research in Africa, USA and the UK. Sample problems, references and electronic supplementary material accompany each chapter.