Applied Regression and ANOVA Using SAS

Applied Regression and ANOVA Using SAS
Author: Patricia F. Moodie
Publisher: CRC Press
Total Pages: 428
Release: 2022-06-07
Genre: Mathematics
ISBN: 1439869529

Applied Regression and ANOVA Using SAS® has been written specifically for non-statisticians and applied statisticians who are primarily interested in what their data are revealing. Interpretation of results are key throughout this intermediate-level applied statistics book. The authors introduce each method by discussing its characteristic features, reasons for its use, and its underlying assumptions. They then guide readers in applying each method by suggesting a step-by-step approach while providing annotated SAS programs to implement these steps. Those unfamiliar with SAS software will find this book helpful as SAS programming basics are covered in the first chapter. Subsequent chapters give programming details on a need-to-know basis. Experienced as well as entry-level SAS users will find the book useful in applying linear regression and ANOVA methods, as explanations of SAS statements and options chosen for specific methods are provided. Features: •Statistical concepts presented in words without matrix algebra and calculus •Numerous SAS programs, including examples which require minimum programming effort to produce high resolution publication-ready graphics •Practical advice on interpreting results in light of relatively recent views on threshold p-values, multiple testing, simultaneous confidence intervals, confounding adjustment, bootstrapping, and predictor variable selection •Suggestions of alternative approaches when a method’s ideal inference conditions are unreasonable for one’s data This book is invaluable for non-statisticians and applied statisticians who analyze and interpret real-world data. It could be used in a graduate level course for non-statistical disciplines as well as in an applied undergraduate course in statistics or biostatistics.

Regression and ANOVA

Regression and ANOVA
Author: Keith E. Muller
Publisher: SAS Press
Total Pages: 0
Release: 2002
Genre: Analysis of variance
ISBN: 9781580258906

Muller and Fetterman (U. of N. Carolina, Chapel Hill) developed this text for use in "Intermediate Linear Models," a graduate level biostatistics class at UNC, covering basic theory, multiple regression, model building and evaluation, ANOVA, and universal tools. The text uses sets of real data, and contains almost no proofs. Ideal prerequisites for use include a matrix algebra class, an undergraduate introduction to mathematical statistics, basic programming skills in the statistical package used in the course (data input, data transformation, and analysis), and basic skills in linear models. Annotation (c)2003 Book News, Inc., Portland, OR (booknews.com).

Applied Econometrics Using the SAS System

Applied Econometrics Using the SAS System
Author: Vivek Ajmani
Publisher: John Wiley & Sons
Total Pages: 414
Release: 2011-09-20
Genre: Mathematics
ISBN: 1118210328

The first cutting-edge guide to using the SAS® system for the analysis of econometric data Applied Econometrics Using the SAS® System is the first book of its kind to treat the analysis of basic econometric data using SAS®, one of the most commonly used software tools among today's statisticians in business and industry. This book thoroughly examines econometric methods and discusses how data collected in economic studies can easily be analyzed using the SAS® system. In addition to addressing the computational aspects of econometric data analysis, the author provides a statistical foundation by introducing the underlying theory behind each method before delving into the related SAS® routines. The book begins with a basic introduction to econometrics and the relationship between classical regression analysis models and econometric models. Subsequent chapters balance essential concepts with SAS® tools and cover key topics such as: Regression analysis using Proc IML and Proc Reg Hypothesis testing Instrumental variables analysis, with a discussion of measurement errors, the assumptions incorporated into the analysis, and specification tests Heteroscedasticity, including GLS and FGLS estimation, group-wise heteroscedasticity, and GARCH models Panel data analysis Discrete choice models, along with coverage of binary choice models and Poisson regression Duration analysis models Assuming only a working knowledge of SAS®, this book is a one-stop reference for using the software to analyze econometric data. Additional features include complete SAS® code, Proc IML routines plus a tutorial on Proc IML, and an appendix with additional programs and data sets. Applied Econometrics Using the SAS® System serves as a relevant and valuable reference for practitioners in the fields of business, economics, and finance. In addition, most students of econometrics are taught using GAUSS and STATA, yet SAS® is the standard in the working world; therefore, this book is an ideal supplement for upper-undergraduate and graduate courses in statistics, economics, and other social sciences since it prepares readers for real-world careers.

SAS System for Regression

SAS System for Regression
Author: Rudolf Freund
Publisher: John Wiley & Sons
Total Pages: 258
Release: 2000-12-29
Genre: Mathematics
ISBN: 0471416649

SAS® System for Regression Learn to perform a wide variety of regression analyses using SAS® software with this example-driven revised favorite from SAS Publishing. With this Third Edition you will learn the basics of performing regression analyses using a wide variety of models including nonlinear models. Other topics covered include performing linear regression analyses using PROC REG diagnosing and providing remedies for data problems, including outliers and multicollinearity. Examples feature numerous SAS procedures including REG, PLOT, GPLOT, NLIN, RSREG, AUTOREG, PRINCOMP, and others. A helpful discussion of theory is supplied where necessary. Some knowledge of both regression and the SAS System are assumed. New for this edition The Third Edition includes revisions, updated material, and new material. You’ll find new information on using SAS/INSIGHT® software regression with a binary response with emphasis on PROC LOGISTIC nonparametric regression (smoothing) using moving averages and PROC LOESS. Additionally, updated material throughout the book includes high-resolution PROC REG graphics output, using the OUTEST option to produce a data set, and using PROC SCORE to predict another data set.

Applied Medical Statistics Using SAS

Applied Medical Statistics Using SAS
Author: Geoff Der
Publisher: CRC Press
Total Pages: 539
Release: 2012-10-01
Genre: Mathematics
ISBN: 1439867984

Written with medical statisticians and medical researchers in mind, this intermediate-level reference explores the use of SAS for analyzing medical data. Applied Medical Statistics Using SAS covers the whole range of modern statistical methods used in the analysis of medical data, including regression, analysis of variance and covariance, longitudi

Biostatistics and Computer-based Analysis of Health Data Using SAS

Biostatistics and Computer-based Analysis of Health Data Using SAS
Author: Christophe Lalanne
Publisher: Elsevier
Total Pages: 176
Release: 2017-06-22
Genre: Mathematics
ISBN: 0081011717

This volume of the Biostatistics and Health Sciences Set focuses on statistics applied to clinical research.The use of SAS for data management and statistical modeling is illustrated using various examples. Many aspects of data processing and statistical analysis of cross-sectional and experimental medical data are covered, including regression models commonly found in medical statistics. This practical book is primarily intended for health researchers with a basic knowledge of statistical methodology. Assuming basic concepts, the authors focus on the practice of biostatistical methods essential to clinical research, epidemiology and analysis of biomedical data (including comparison of two groups, analysis of categorical data, ANOVA, linear and logistic regression, and survival analysis). The use of examples from clinical trials and epidemiological studies provide the basis for a series of practical exercises, which provide instruction and familiarize the reader with essential SAS commands. - Presents the use of SAS software in the statistical approach for the management of data modeling - Includes elements of the language and descriptive statistics - Supplies measures of association, comparison of means, and proportions for two or more samples - Explores linear and logistic regression - Provides survival data analysis

Exploring Modern Regression Methods Using SAS

Exploring Modern Regression Methods Using SAS
Author:
Publisher:
Total Pages: 142
Release: 2019-06-21
Genre:
ISBN: 9781642954876

This special collection of SAS Global Forum papers demonstrates new and enhanced capabilities and applications of lesser-known SAS/STAT and SAS Viya procedures for regression models. The goal here is to raise awareness of current valuable SAS/STAT content of which the user may not be aware. Also available free as a PDF from sas.com/books.

Multiple Imputation of Missing Data Using SAS

Multiple Imputation of Missing Data Using SAS
Author: Patricia Berglund
Publisher: SAS Institute
Total Pages: 328
Release: 2014-07-01
Genre: Computers
ISBN: 162959203X

Find guidance on using SAS for multiple imputation and solving common missing data issues. Multiple Imputation of Missing Data Using SAS provides both theoretical background and constructive solutions for those working with incomplete data sets in an engaging example-driven format. It offers practical instruction on the use of SAS for multiple imputation and provides numerous examples that use a variety of public release data sets with applications to survey data. Written for users with an intermediate background in SAS programming and statistics, this book is an excellent resource for anyone seeking guidance on multiple imputation. The authors cover the MI and MIANALYZE procedures in detail, along with other procedures used for analysis of complete data sets. They guide analysts through the multiple imputation process, including evaluation of missing data patterns, choice of an imputation method, execution of the process, and interpretation of results. Topics discussed include how to deal with missing data problems in a statistically appropriate manner, how to intelligently select an imputation method, how to incorporate the uncertainty introduced by the imputation process, and how to incorporate the complex sample design (if appropriate) through use of the SAS SURVEY procedures. Discover the theoretical background and see extensive applications of the multiple imputation process in action. This book is part of the SAS Press program.

Applied Multivariate Statistics for the Social Sciences

Applied Multivariate Statistics for the Social Sciences
Author: Keenan A. Pituch
Publisher: Routledge
Total Pages: 814
Release: 2015-12-07
Genre: Psychology
ISBN: 1317805925

Now in its 6th edition, the authoritative textbook Applied Multivariate Statistics for the Social Sciences, continues to provide advanced students with a practical and conceptual understanding of statistical procedures through examples and data-sets from actual research studies. With the added expertise of co-author Keenan Pituch (University of Texas-Austin), this 6th edition retains many key features of the previous editions, including its breadth and depth of coverage, a review chapter on matrix algebra, applied coverage of MANOVA, and emphasis on statistical power. In this new edition, the authors continue to provide practical guidelines for checking the data, assessing assumptions, interpreting, and reporting the results to help students analyze data from their own research confidently and professionally. Features new to this edition include: NEW chapter on Logistic Regression (Ch. 11) that helps readers understand and use this very flexible and widely used procedure NEW chapter on Multivariate Multilevel Modeling (Ch. 14) that helps readers understand the benefits of this "newer" procedure and how it can be used in conventional and multilevel settings NEW Example Results Section write-ups that illustrate how results should be presented in research papers and journal articles NEW coverage of missing data (Ch. 1) to help students understand and address problems associated with incomplete data Completely re-written chapters on Exploratory Factor Analysis (Ch. 9), Hierarchical Linear Modeling (Ch. 13), and Structural Equation Modeling (Ch. 16) with increased focus on understanding models and interpreting results NEW analysis summaries, inclusion of more syntax explanations, and reduction in the number of SPSS/SAS dialogue boxes to guide students through data analysis in a more streamlined and direct approach Updated syntax to reflect newest versions of IBM SPSS (21) /SAS (9.3) A free online resources site at www.routledge.com/9780415836661 with data sets and syntax from the text, additional data sets, and instructor’s resources (including PowerPoint lecture slides for select chapters, a conversion guide for 5th edition adopters, and answers to exercises) Ideal for advanced graduate-level courses in education, psychology, and other social sciences in which multivariate statistics, advanced statistics, or quantitative techniques courses are taught, this book also appeals to practicing researchers as a valuable reference. Pre-requisites include a course on factorial ANOVA and covariance; however, a working knowledge of matrix algebra is not assumed.