Applied Functional Data Analysis
Download Applied Functional Data Analysis full books in PDF, epub, and Kindle. Read online free Applied Functional Data Analysis ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : J.O. Ramsay |
Publisher | : Springer |
Total Pages | : 194 |
Release | : 2007-11-23 |
Genre | : Mathematics |
ISBN | : 0387224653 |
This book contains the ideas of functional data analysis by a number of case studies. The case studies are accessible to research workers in a wide range of disciplines. Every reader should gain not only a specific understanding of the methods of functional data analysis, but more importantly a general insight into the underlying patterns of thought. There is an associated web site with MATLABr and S?PLUSr implementations of the methods discussed.
Author | : James Ramsay |
Publisher | : Springer Science & Business Media |
Total Pages | : 317 |
Release | : 2013-11-11 |
Genre | : Mathematics |
ISBN | : 147577107X |
Included here are expressions in the functional domain of such classics as linear regression, principal components analysis, linear modelling, and canonical correlation analysis, as well as specifically functional techniques such as curve registration and principal differential analysis. Data arising in real applications are used throughout for both motivation and illustration, showing how functional approaches allow us to see new things, especially by exploiting the smoothness of the processes generating the data. The data sets exemplify the wide scope of functional data analysis; they are drawn from growth analysis, meteorology, biomechanics, equine science, economics, and medicine. The book presents novel statistical technology while keeping the mathematical level widely accessible. It is designed to appeal to students, applied data analysts, and to experienced researchers; and as such is of value both within statistics and across a broad spectrum of other fields. Much of the material appears here for the first time.
Author | : James Ramsay |
Publisher | : Springer Science & Business Media |
Total Pages | : 213 |
Release | : 2009-06-29 |
Genre | : Computers |
ISBN | : 0387981853 |
The book provides an application-oriented overview of functional analysis, with extended and accessible presentations of key concepts such as spline basis functions, data smoothing, curve registration, functional linear models and dynamic systems Functional data analysis is put to work in a wide a range of applications, so that new problems are likely to find close analogues in this book The code in R and Matlab in the book has been designed to permit easy modification to adapt to new data structures and research problems
Author | : Eberhard Zeidler |
Publisher | : Springer Science & Business Media |
Total Pages | : 503 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461208157 |
The first part of a self-contained, elementary textbook, combining linear functional analysis, nonlinear functional analysis, numerical functional analysis, and their substantial applications with each other. As such, the book addresses undergraduate students and beginning graduate students of mathematics, physics, and engineering who want to learn how functional analysis elegantly solves mathematical problems which relate to our real world. Applications concern ordinary and partial differential equations, the method of finite elements, integral equations, special functions, both the Schroedinger approach and the Feynman approach to quantum physics, and quantum statistics. As a prerequisite, readers should be familiar with some basic facts of calculus. The second part has been published under the title, Applied Functional Analysis: Main Principles and Their Applications.
Author | : Piotr Kokoszka |
Publisher | : CRC Press |
Total Pages | : 371 |
Release | : 2017-09-27 |
Genre | : Mathematics |
ISBN | : 1498746691 |
Introduction to Functional Data Analysis provides a concise textbook introduction to the field. It explains how to analyze functional data, both at exploratory and inferential levels. It also provides a systematic and accessible exposition of the methodology and the required mathematical framework. The book can be used as textbook for a semester-long course on FDA for advanced undergraduate or MS statistics majors, as well as for MS and PhD students in other disciplines, including applied mathematics, environmental science, public health, medical research, geophysical sciences and economics. It can also be used for self-study and as a reference for researchers in those fields who wish to acquire solid understanding of FDA methodology and practical guidance for its implementation. Each chapter contains plentiful examples of relevant R code and theoretical and data analytic problems. The material of the book can be roughly divided into four parts of approximately equal length: 1) basic concepts and techniques of FDA, 2) functional regression models, 3) sparse and dependent functional data, and 4) introduction to the Hilbert space framework of FDA. The book assumes advanced undergraduate background in calculus, linear algebra, distributional probability theory, foundations of statistical inference, and some familiarity with R programming. Other required statistics background is provided in scalar settings before the related functional concepts are developed. Most chapters end with references to more advanced research for those who wish to gain a more in-depth understanding of a specific topic.
Author | : Jin-Ting Zhang |
Publisher | : CRC Press |
Total Pages | : 406 |
Release | : 2013-06-18 |
Genre | : Mathematics |
ISBN | : 1439862745 |
Despite research interest in functional data analysis in the last three decades, few books are available on the subject. Filling this gap, Analysis of Variance for Functional Data presents up-to-date hypothesis testing methods for functional data analysis. The book covers the reconstruction of functional observations, functional ANOVA, functional l
Author | : Anuj Srivastava |
Publisher | : Springer |
Total Pages | : 454 |
Release | : 2016-10-03 |
Genre | : Mathematics |
ISBN | : 1493940201 |
This textbook for courses on function data analysis and shape data analysis describes how to define, compare, and mathematically represent shapes, with a focus on statistical modeling and inference. It is aimed at graduate students in analysis in statistics, engineering, applied mathematics, neuroscience, biology, bioinformatics, and other related areas. The interdisciplinary nature of the broad range of ideas covered—from introductory theory to algorithmic implementations and some statistical case studies—is meant to familiarize graduate students with an array of tools that are relevant in developing computational solutions for shape and related analyses. These tools, gleaned from geometry, algebra, statistics, and computational science, are traditionally scattered across different courses, departments, and disciplines; Functional and Shape Data Analysis offers a unified, comprehensive solution by integrating the registration problem into shape analysis, better preparing graduate students for handling future scientific challenges. Recently, a data-driven and application-oriented focus on shape analysis has been trending. This text offers a self-contained treatment of this new generation of methods in shape analysis of curves. Its main focus is shape analysis of functions and curves—in one, two, and higher dimensions—both closed and open. It develops elegant Riemannian frameworks that provide both quantification of shape differences and registration of curves at the same time. Additionally, these methods are used for statistically summarizing given curve data, performing dimension reduction, and modeling observed variability. It is recommended that the reader have a background in calculus, linear algebra, numerical analysis, and computation.
Author | : J. Tinsley Oden |
Publisher | : CRC Press |
Total Pages | : 610 |
Release | : 2017-12-01 |
Genre | : Mathematics |
ISBN | : 149876116X |
Applied Functional Analysis, Third Edition provides a solid mathematical foundation for the subject. It motivates students to study functional analysis by providing many contemporary applications and examples drawn from mechanics and science. This well-received textbook starts with a thorough introduction to modern mathematics before continuing with detailed coverage of linear algebra, Lebesque measure and integration theory, plus topology with metric spaces. The final two chapters provides readers with an in-depth look at the theory of Banach and Hilbert spaces before concluding with a brief introduction to Spectral Theory. The Third Edition is more accessible and promotes interest and motivation among students to prepare them for studying the mathematical aspects of numerical analysis and the mathematical theory of finite elements.
Author | : Frédéric Ferraty |
Publisher | : Springer Science & Business Media |
Total Pages | : 260 |
Release | : 2006-11-22 |
Genre | : Mathematics |
ISBN | : 0387366202 |
Modern apparatuses allow us to collect samples of functional data, mainly curves but also images. On the other hand, nonparametric statistics produces useful tools for standard data exploration. This book links these two fields of modern statistics by explaining how functional data can be studied through parameter-free statistical ideas. At the same time it shows how functional data can be studied through parameter-free statistical ideas, and offers an original presentation of new nonparametric statistical methods for functional data analysis.
Author | : Lajos Horváth |
Publisher | : Springer Science & Business Media |
Total Pages | : 426 |
Release | : 2012-05-08 |
Genre | : Mathematics |
ISBN | : 1461436559 |
This book presents recently developed statistical methods and theory required for the application of the tools of functional data analysis to problems arising in geosciences, finance, economics and biology. It is concerned with inference based on second order statistics, especially those related to the functional principal component analysis. While it covers inference for independent and identically distributed functional data, its distinguishing feature is an in depth coverage of dependent functional data structures, including functional time series and spatially indexed functions. Specific inferential problems studied include two sample inference, change point analysis, tests for dependence in data and model residuals and functional prediction. All procedures are described algorithmically, illustrated on simulated and real data sets, and supported by a complete asymptotic theory. The book can be read at two levels. Readers interested primarily in methodology will find detailed descriptions of the methods and examples of their application. Researchers interested also in mathematical foundations will find carefully developed theory. The organization of the chapters makes it easy for the reader to choose an appropriate focus. The book introduces the requisite, and frequently used, Hilbert space formalism in a systematic manner. This will be useful to graduate or advanced undergraduate students seeking a self-contained introduction to the subject. Advanced researchers will find novel asymptotic arguments.