Applied Big Data Analytics and Its Role in COVID-19 Research

Applied Big Data Analytics and Its Role in COVID-19 Research
Author: Peng Zhao
Publisher:
Total Pages: 300
Release: 2022
Genre: Big data
ISBN: 9781799887935

"This book provides emerging research on the development and implementation of real-world cases in big data analytics for various industrial and public sections including healthcare, business, social media, and government by highlighting topics such as data processing, deep learning, statistical inference, data visualization, and decision support systems"--

Applied Big Data Analytics and Its Role in COVID-19 Research

Applied Big Data Analytics and Its Role in COVID-19 Research
Author: Zhao, Peng
Publisher: IGI Global
Total Pages: 349
Release: 2022-04-29
Genre: Computers
ISBN: 1799887952

There has been a multitude of studies focused on the COVID-19 pandemic across fields and disciplines as all sectors of life have had to adjust the way things are done and adapt to the constantly shifting environment. These studies are crucial as they provide support and perspectives on how things are changing and what needs to be done to stay afloat. Connecting COVID-19-related studies and big data analytics is crucial for the advancement of industrial applications and research areas. Applied Big Data Analytics and Its Role in COVID-19 Research introduces the most recent industrial applications and research topics on COVID-19 with big data analytics. Featuring coverage on a broad range of big data technologies such as data gathering, artificial intelligence, smart diagnostics, and mining mobility, this publication provides concrete examples and cases of usage of data-driven projects in COVID-19 research. This reference work is a vital resource for data scientists, technical managers, researchers, scholars, practitioners, academicians, instructors, and students.

Artificial Intelligence for COVID-19

Artificial Intelligence for COVID-19
Author: Diego Oliva
Publisher: Springer Nature
Total Pages: 594
Release: 2021-07-19
Genre: Technology & Engineering
ISBN: 3030697444

This book presents a compilation of the most recent implementation of artificial intelligence methods for solving different problems generated by the COVID-19. The problems addressed came from different fields and not only from medicine. The information contained in the book explores different areas of machine and deep learning, advanced image processing, computational intelligence, IoT, robotics and automation, optimization, mathematical modeling, neural networks, information technology, big data, data processing, data mining, and likewise. Moreover, the chapters include the theory and methodologies used to provide an overview of applying these tools to the useful contribution to help to face the emerging disaster. The book is primarily intended for researchers, decision makers, practitioners, and readers interested in these subject matters. The book is useful also as rich case studies and project proposals for postgraduate courses in those specializations.

Big Data Analytics and Artificial Intelligence Against COVID-19: Innovation Vision and Approach

Big Data Analytics and Artificial Intelligence Against COVID-19: Innovation Vision and Approach
Author: Aboul-Ella Hassanien
Publisher: Springer
Total Pages: 307
Release: 2020-10-13
Genre: Computers
ISBN: 9783030552572

This book includes research articles and expository papers on the applications of artificial intelligence and big data analytics to battle the pandemic. In the context of COVID-19, this book focuses on how big data analytic and artificial intelligence help fight COVID-19. The book is divided into four parts. The first part discusses the forecasting and visualization of the COVID-19 data. The second part describes applications of artificial intelligence in the COVID-19 diagnosis of chest X-Ray imaging. The third part discusses the insights of artificial intelligence to stop spread of COVID-19, while the last part presents deep learning and big data analytics which help fight the COVID-19.

Big Data Analytics for Improved Accuracy, Efficiency, and Decision Making in Digital Marketing

Big Data Analytics for Improved Accuracy, Efficiency, and Decision Making in Digital Marketing
Author: Singh, Amandeep
Publisher: IGI Global
Total Pages: 310
Release: 2021-06-18
Genre: Business & Economics
ISBN: 1799872335

The availability of big data, low-cost commodity hardware, and new information management and analytic software have produced a unique moment in the history of data analysis. The convergence of these trends means that we have the capabilities required to analyze astonishing data sets quickly and cost-effectively for the first time in history. They represent a genuine leap forward and a clear opportunity to realize enormous gains in terms of efficiency, productivity, revenue, and profitability especially in digital marketing. Data plays a huge role in understanding valuable insights about target demographics and customer preferences. From every interaction with technology, regardless of whether it is active or passive, we are creating new data that can describe us. If analyzed correctly, these data points can explain a lot about our behavior, personalities, and life events. Companies can leverage these insights for product improvements, business strategy, and marketing campaigns to cater to the target customers. Big Data Analytics for Improved Accuracy, Efficiency, and Decision Making in Digital Marketing aids understanding of big data in terms of digital marketing for meaningful analysis of information that can improve marketing efforts and strategies using the latest digital techniques. The chapters cover a wide array of essential marketing topics and techniques, including search engine marketing, consumer behavior, social media marketing, online advertising, and how they interact with big data. This book is essential for professionals and researchers working in the field of analytics, data, and digital marketing, along with marketers, advertisers, brand managers, social media specialists, managers, sales professionals, practitioners, researchers, academicians, and students looking for the latest information on how big data is being used in digital marketing strategies.

Computational Intelligence Techniques for Combating COVID-19

Computational Intelligence Techniques for Combating COVID-19
Author: Sandeep Kautish
Publisher: Springer Nature
Total Pages: 392
Release: 2021
Genre: Biomedical engineering
ISBN: 3030689360

This book presents the latest cutting edge research, theoretical methods, and novel applications in the field of computational intelligence and computational biological approaches that are aiming to combat COVID-19. The book gives the technological key drivers behind using AI to find drugs that target the virus, shedding light on the structure of COVID-19, detecting the outbreak and spread of new diseases, spotting signs of a COVID-19 infection in medical images, monitoring how the virus and lockdown is affecting mental health, and forecasting how COVID-19 cases and deaths will spread across cities and why. Further, the book helps readers understand computational intelligence techniques combating COVID-19 in a simple and systematic way. Provides a comprehensive reference covering innovations and development of theories, conceptual models and computational algorithms focused on COVID-19; Asserts all relevant research, key themes, complex adaptive systems, metrics and paradigms dedicated towards COVID-19, enabled with evolutionary methods of computational sciences; Explores how AI and computational techniques can help to predict which patients with the virus would go on to develop Acute Respiratory Distress Syndrome (ARDS).

Data Science Advancements in Pandemic and Outbreak Management

Data Science Advancements in Pandemic and Outbreak Management
Author: Asimakopoulou, Eleana
Publisher: IGI Global
Total Pages: 255
Release: 2021-04-09
Genre: Computers
ISBN: 1799867382

Pandemics are disruptive. Thus, there is a need to prepare and plan actions in advance for identifying, assessing, and responding to such events to manage uncertainty and support sustainable livelihood and wellbeing. A detailed assessment of a continuously evolving situation needs to take place, and several aspects must be brought together and examined before the declaration of a pandemic even happens. Various health organizations; crisis management bodies; and authorities at local, national, and international levels are involved in the management of pandemics. There is no better time to revisit current approaches to cope with these new and unforeseen threats. As countries must strike a fine balance between protecting health, minimizing economic and social disruption, and respecting human rights, there has been an emerging interest in lessons learned and specifically in revisiting past and current pandemic approaches. Such approaches involve strategies and practices from several disciplines and fields including healthcare, management, IT, mathematical modeling, and data science. Using data science to advance in-situ practices and prompt future directions could help alleviate or even prevent human, financial, and environmental compromise, and loss and social interruption via state-of-the-art technologies and frameworks. Data Science Advancements in Pandemic and Outbreak Management demonstrates how strategies and state-of-the-art IT have and/or could be applied to serve as the vehicle to advance pandemic and outbreak management. The chapters will introduce both technical and non-technical details of management strategies and advanced IT, data science, and mathematical modelling and demonstrate their applications and their potential utilization within the identification and management of pandemics and outbreaks. It also prompts revisiting and critically reviewing past and current approaches, identifying good and bad practices, and further developing the area for future adaptation. This book is ideal for data scientists, data analysts, infectious disease experts, researchers studying pandemics and outbreaks, IT, crisis and disaster management, academics, practitioners, government officials, and students interested in applicable theories and practices in data science to mitigate, prepare for, respond to, and recover from future pandemics and outbreaks.

Integrating AI in IoT Analytics on the Cloud for Healthcare Applications

Integrating AI in IoT Analytics on the Cloud for Healthcare Applications
Author: Jeya Mala, D.
Publisher: IGI Global
Total Pages: 312
Release: 2022-01-07
Genre: Computers
ISBN: 1799891348

Internet of things (IoT) applications employed for healthcare generate a huge amount of data that needs to be analyzed to produce the expected reports. To accomplish this task, a cloud-based analytical solution is ideal in order to generate faster reports in comparison to the traditional way. Given the current state of the world in which every day IoT devices are developed to provide healthcare solutions, it is essential to consider the mechanisms used to collect and analyze the data to provide thorough reports. Integrating AI in IoT Analytics on the Cloud for Healthcare Applications applies artificial intelligence (AI) in edge analytics for healthcare applications, analyzes the impact of tools and techniques in edge analytics for healthcare, and discusses security solutions for edge analytics in healthcare IoT. Covering topics such as data analytics and next generation healthcare systems, it is ideal for researchers, academicians, technologists, IT specialists, data scientists, healthcare industries, IoT developers, data security analysts, educators, and students.

Artificial Intelligence and Big Data Analytics for Smart Healthcare

Artificial Intelligence and Big Data Analytics for Smart Healthcare
Author: Miltiadis Lytras
Publisher: Academic Press
Total Pages: 292
Release: 2021-10-22
Genre: Medical
ISBN: 0128220627

Artificial Intelligence and Big Data Analytics for Smart Healthcare serves as a key reference for practitioners and experts involved in healthcare as they strive to enhance the value added of healthcare and develop more sustainable healthcare systems. It brings together insights from emerging sophisticated information and communication technologies such as big data analytics, artificial intelligence, machine learning, data science, medical intelligence, and, by dwelling on their current and prospective applications, highlights managerial and policymaking challenges they may generate. The book is split into five sections: big data infrastructure, framework and design for smart healthcare; signal processing techniques for smart healthcare applications; business analytics (descriptive, diagnostic, predictive and prescriptive) for smart healthcare; emerging tools and techniques for smart healthcare; and challenges (security, privacy, and policy) in big data for smart healthcare. The content is carefully developed to be understandable to different members of healthcare chain to leverage collaborations with researchers and industry. - Presents a holistic discussion on the new landscape of data driven medical technologies including Big Data, Analytics, Artificial Intelligence, Machine Learning, and Precision Medicine - Discusses such technologies with case study driven approach with reference to real world application and systems, to make easier the understanding to the reader not familiar with them - Encompasses an international collaboration perspective, providing understandable knowledge to professionals involved with healthcare to leverage productive partnerships with technology developers

Big Data Analytics in Healthcare

Big Data Analytics in Healthcare
Author: Anand J. Kulkarni
Publisher: Springer Nature
Total Pages: 193
Release: 2019-10-01
Genre: Technology & Engineering
ISBN: 3030316726

This book includes state-of-the-art discussions on various issues and aspects of the implementation, testing, validation, and application of big data in the context of healthcare. The concept of big data is revolutionary, both from a technological and societal well-being standpoint. This book provides a comprehensive reference guide for engineers, scientists, and students studying/involved in the development of big data tools in the areas of healthcare and medicine. It also features a multifaceted and state-of-the-art literature review on healthcare data, its modalities, complexities, and methodologies, along with mathematical formulations. The book is divided into two main sections, the first of which discusses the challenges and opportunities associated with the implementation of big data in the healthcare sector. In turn, the second addresses the mathematical modeling of healthcare problems, as well as current and potential future big data applications and platforms.