Applications Of The Theory Of Matrices
Download Applications Of The Theory Of Matrices full books in PDF, epub, and Kindle. Read online free Applications Of The Theory Of Matrices ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : F. R. Gantmacher |
Publisher | : Courier Corporation |
Total Pages | : 336 |
Release | : 2005-01-01 |
Genre | : Mathematics |
ISBN | : 0486445542 |
The breadth of matrix theory's applications is reflected by this volume, which features material of interest to applied mathematicians as well as to control engineers studying stability of a servo-mechanism and numerical analysts evaluating the roots of a polynomial. Starting with a survey of complex symmetric, antisymmetric, and orthogonal matrices, the text advances to explorations of singular bundles of matrices and matrices with nonnegative elements. Applied mathematicians will take particular note of the full and readable chapter on applications of matrix theory to the study of systems of linear differential equations, and the text concludes with an exposition on the Routh-Hurwitz problem plus several helpful appendixes. 1959 edition.
Author | : Denis Serre |
Publisher | : Springer Science & Business Media |
Total Pages | : 291 |
Release | : 2010-10-26 |
Genre | : Mathematics |
ISBN | : 1441976833 |
In this book, Denis Serre begins by providing a clean and concise introduction to the basic theory of matrices. He then goes on to give many interesting applications of matrices to different aspects of mathematics and also other areas of science and engineering. With forty percent new material, this second edition is significantly different from the first edition. Newly added topics include: • Dunford decomposition, • tensor and exterior calculus, polynomial identities, • regularity of eigenvalues for complex matrices, • functional calculus and the Dunford–Taylor formula, • numerical range, • Weyl's and von Neumann’s inequalities, and • Jacobi method with random choice. The book mixes together algebra, analysis, complexity theory and numerical analysis. As such, this book will provide many scientists, not just mathematicians, with a useful and reliable reference. It is intended for advanced undergraduate and graduate students with either applied or theoretical goals. This book is based on a course given by the author at the École Normale Supérieure de Lyon.
Author | : Peter Lancaster |
Publisher | : Academic Press |
Total Pages | : 590 |
Release | : 1985-05-28 |
Genre | : Computers |
ISBN | : 9780124355606 |
Matrix algebra; Determinants, inverse matrices, and rank; Linear, euclidean, and unitary spaces; Linear transformations and matrices; Linear transformations in unitary spaces and simple matrices; The jordan canonical form: a geometric approach; Matrix polynomials and normal forms; The variational method; Functions of matrices; Norms and bounds for eigenvalues; Perturbation theory; Linear matrices equations and generalized inverses; Stability problems; Matrix polynomials; Nonnegative matrices.
Author | : Denis Serre |
Publisher | : Springer Science & Business Media |
Total Pages | : 215 |
Release | : 2007-12-18 |
Genre | : Mathematics |
ISBN | : 038722758X |
Clear and concise introduction to matrices with elegant proofs; Of interest to scientists from many disciplines; Gives many interesting applications to different parts of mathematics, such as algebra, analysis and complexity theory; Contains 160 exercises, half of them on advanced material; Includes at least one advanced result per chapter
Author | : Jason J. Molitierno |
Publisher | : CRC Press |
Total Pages | : 425 |
Release | : 2016-04-19 |
Genre | : Computers |
ISBN | : 1439863393 |
On the surface, matrix theory and graph theory seem like very different branches of mathematics. However, adjacency, Laplacian, and incidence matrices are commonly used to represent graphs, and many properties of matrices can give us useful information about the structure of graphs.Applications of Combinatorial Matrix Theory to Laplacian Matrices o
Author | : Feliks Ruvimovich Gantmakher |
Publisher | : |
Total Pages | : 296 |
Release | : 1960 |
Genre | : Matrices |
ISBN | : |
Author | : Fumio Hiai |
Publisher | : Springer Science & Business Media |
Total Pages | : 337 |
Release | : 2014-02-06 |
Genre | : Mathematics |
ISBN | : 3319041509 |
Matrices can be studied in different ways. They are a linear algebraic structure and have a topological/analytical aspect (for example, the normed space of matrices) and they also carry an order structure that is induced by positive semidefinite matrices. The interplay of these closely related structures is an essential feature of matrix analysis. This book explains these aspects of matrix analysis from a functional analysis point of view. After an introduction to matrices and functional analysis, it covers more advanced topics such as matrix monotone functions, matrix means, majorization and entropies. Several applications to quantum information are also included. Introduction to Matrix Analysis and Applications is appropriate for an advanced graduate course on matrix analysis, particularly aimed at studying quantum information. It can also be used as a reference for researchers in quantum information, statistics, engineering and economics.
Author | : James E. Gentle |
Publisher | : Springer Science & Business Media |
Total Pages | : 536 |
Release | : 2007-07-27 |
Genre | : Computers |
ISBN | : 0387708723 |
Matrix algebra is one of the most important areas of mathematics for data analysis and for statistical theory. This much-needed work presents the relevant aspects of the theory of matrix algebra for applications in statistics. It moves on to consider the various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes the special properties of those matrices. Finally, it covers numerical linear algebra, beginning with a discussion of the basics of numerical computations, and following up with accurate and efficient algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors.
Author | : Richard A. Brualdi |
Publisher | : CRC Press |
Total Pages | : 288 |
Release | : 2008-08-06 |
Genre | : Mathematics |
ISBN | : 9781420082241 |
Unlike most elementary books on matrices, A Combinatorial Approach to Matrix Theory and Its Applications employs combinatorial and graph-theoretical tools to develop basic theorems of matrix theory, shedding new light on the subject by exploring the connections of these tools to matrices. After reviewing the basics of graph theory, elementary counting formulas, fields, and vector spaces, the book explains the algebra of matrices and uses the König digraph to carry out simple matrix operations. It then discusses matrix powers, provides a graph-theoretical definition of the determinant using the Coates digraph of a matrix, and presents a graph-theoretical interpretation of matrix inverses. The authors develop the elementary theory of solutions of systems of linear equations and show how to use the Coates digraph to solve a linear system. They also explore the eigenvalues, eigenvectors, and characteristic polynomial of a matrix; examine the important properties of nonnegative matrices that are part of the Perron–Frobenius theory; and study eigenvalue inclusion regions and sign-nonsingular matrices. The final chapter presents applications to electrical engineering, physics, and chemistry. Using combinatorial and graph-theoretical tools, this book enables a solid understanding of the fundamentals of matrix theory and its application to scientific areas.
Author | : Vadim Olshevsky |
Publisher | : World Scientific |
Total Pages | : 604 |
Release | : 2010-04-05 |
Genre | : Mathematics |
ISBN | : 9814469556 |
Compared to other books devoted to matrices, this volume is unique in covering the whole of a triptych consisting of algebraic theory, algorithmic problems and numerical applications, all united by the essential use and urge for development of matrix methods. This was the spirit of the 2nd International Conference on Matrix Methods and Operator Equations from 23-27 July 2007 in Moscow that was organized by Dario Bini, Gene Golub, Alexander Guterman, Vadim Olshevsky, Stefano Serra-Capizzano, Gilbert Strang and Eugene Tyrtyshnikov.Matrix methods provide the key to many problems in pure and applied mathematics. However, linear algebra theory, numerical algorithms and matrices in FEM/BEM applications usually live as if in three separate worlds. In this volume, maybe for the first time ever, they are compiled together as one entity as it was at the Moscow meeting, where the algebraic part was impersonated by Hans Schneider, algorithms by Gene Golub, and applications by Guri Marchuk. All topics intervened in plenary sessions are specially categorized into three sections of this volume.The soul of the meeting was Gene Golub, who rendered a charming “Golub's dimension” to the three main axes of the conference topics. This volume is dedicated in gratitude to his memory.