Applications Of Statistics And Probability In Civil Engineering
Download Applications Of Statistics And Probability In Civil Engineering full books in PDF, epub, and Kindle. Read online free Applications Of Statistics And Probability In Civil Engineering ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Michael Faber |
Publisher | : CRC Press |
Total Pages | : 938 |
Release | : 2011-07-15 |
Genre | : Technology & Engineering |
ISBN | : 0203144791 |
Under the pressure of harsh environmental conditions and natural hazards, large parts of the world population are struggling to maintain their livelihoods. Population growth, increasing land utilization and shrinking natural resources have led to an increasing demand of improved efficiency of existing technologies and the development of new ones. A
Author | : Jack R Benjamin |
Publisher | : Courier Corporation |
Total Pages | : 704 |
Release | : 2014-07-16 |
Genre | : Mathematics |
ISBN | : 0486780724 |
"This text covers the development of decision theory and related applications of probability. Extensive examples and illustrations cultivate students' appreciation for applications, including strength of materials, soil mechanics, construction planning, and water-resource design. Emphasis on fundamentals makes the material accessible to students trained in classical statistics and provides a brief introduction to probability. 1970 edition"--
Author | : William DeCoursey |
Publisher | : Elsevier |
Total Pages | : 417 |
Release | : 2003-05-14 |
Genre | : Mathematics |
ISBN | : 0080489753 |
Statistics and Probability for Engineering Applications provides a complete discussion of all the major topics typically covered in a college engineering statistics course. This textbook minimizes the derivations and mathematical theory, focusing instead on the information and techniques most needed and used in engineering applications. It is filled with practical techniques directly applicable on the job. Written by an experienced industry engineer and statistics professor, this book makes learning statistical methods easier for today's student. This book can be read sequentially like a normal textbook, but it is designed to be used as a handbook, pointing the reader to the topics and sections pertinent to a particular type of statistical problem. Each new concept is clearly and briefly described, whenever possible by relating it to previous topics. Then the student is given carefully chosen examples to deepen understanding of the basic ideas and how they are applied in engineering. The examples and case studies are taken from real-world engineering problems and use real data. A number of practice problems are provided for each section, with answers in the back for selected problems. This book will appeal to engineers in the entire engineering spectrum (electronics/electrical, mechanical, chemical, and civil engineering); engineering students and students taking computer science/computer engineering graduate courses; scientists needing to use applied statistical methods; and engineering technicians and technologists. * Filled with practical techniques directly applicable on the job* Contains hundreds of solved problems and case studies, using real data sets* Avoids unnecessary theory
Author | : Geoffrey Nesbitt Smith |
Publisher | : HarperCollins |
Total Pages | : 244 |
Release | : 1986-01-01 |
Genre | : Engineering mathematics |
ISBN | : 9780003831542 |
Author | : Milan Holický |
Publisher | : Springer Science & Business Media |
Total Pages | : 188 |
Release | : 2013-08-04 |
Genre | : Mathematics |
ISBN | : 3642383009 |
The theory of probability and mathematical statistics is becoming an indispensable discipline in many branches of science and engineering. This is caused by increasing significance of various uncertainties affecting performance of complex technological systems. Fundamental concepts and procedures used in analysis of these systems are often based on the theory of probability and mathematical statistics. The book sets out fundamental principles of the probability theory, supplemented by theoretical models of random variables, evaluation of experimental data, sampling theory, distribution updating and tests of statistical hypotheses. Basic concepts of Bayesian approach to probability and two-dimensional random variables, are also covered. Examples of reliability analysis and risk assessment of technological systems are used throughout the book to illustrate basic theoretical concepts and their applications. The primary audience for the book includes undergraduate and graduate students of science and engineering, scientific workers and engineers and specialists in the field of reliability analysis and risk assessment. Except basic knowledge of undergraduate mathematics no special prerequisite is required.
Author | : Michael Havbro Faber |
Publisher | : Springer Science & Business Media |
Total Pages | : 198 |
Release | : 2012-03-26 |
Genre | : Technology & Engineering |
ISBN | : 9400740557 |
This book provides the reader with the basic skills and tools of statistics and probability in the context of engineering modeling and analysis. The emphasis is on the application and the reasoning behind the application of these skills and tools for the purpose of enhancing decision making in engineering. The purpose of the book is to ensure that the reader will acquire the required theoretical basis and technical skills such as to feel comfortable with the theory of basic statistics and probability. Moreover, in this book, as opposed to many standard books on the same subject, the perspective is to focus on the use of the theory for the purpose of engineering model building and decision making. This work is suitable for readers with little or no prior knowledge on the subject of statistics and probability.
Author | : Alfredo H-S. Ang |
Publisher | : John Wiley & Sons |
Total Pages | : 428 |
Release | : 2007 |
Genre | : Mathematics |
ISBN | : |
Apply the principles of probability and statistics to realistic engineering problems The easiest and most effective way to learn the principles of probabilistic modeling and statistical inference is to apply those principles to a variety of applications. That’s why Ang and Tang’s Second Edition of Probability Concepts in Engineering (previously titled Probability Concepts in Engineering Planning and Design) explains concepts and methods using a wide range of problems related to engineering and the physical sciences, particularly civil and environmental engineering. Now extensively revised with new illustrative problems and new and expanded topics, this Second Edition will help you develop a thorough understanding of probability and statistics and the ability to formulate and solve real-world problems in engineering. The authors present each basic principle using different examples, and give you the opportunity to enhance your understanding with practice problems. The text is ideally suited for students, as well as those wishing to learn and apply the principles and tools of statistics and probability through self-study. Key Features in this 2nd Edition: A new chapter (Chapter 5) covers Computer-Based Numerical and Simulation Methods in Probability, to extend and expand the analytical methods to more complex engineering problems. New and expanded coverage includes distribution of extreme values (Chapter 3), the Anderson-Darling method for goodness-of-fit test (Chapter 6), hypothesis testing (Chapter 6), the determination of confidence intervals in linear regression (Chapter 8), and Bayesian regression and correlation analyses (Chapter 9). Many new exercise problems in each chapter help you develop a working knowledge of concepts and methods. Provides a wide variety of examples, including many new to this edition, to help you learn and understand specific concepts. Illustrates the formulation and solution of engineering-type probabilistic problems through computer-based methods, including developing computer codes using commercial software such as MATLAB and MATHCAD. Introduces and develops analytical probabilistic models and shows how to formulate engineering problems under uncertainty, and provides the fundamentals for quantitative risk assessment.
Author | : Bhisham C. Gupta |
Publisher | : John Wiley & Sons |
Total Pages | : 896 |
Release | : 2013-04-29 |
Genre | : Mathematics |
ISBN | : 1118464044 |
Introducing the tools of statistics and probability from the ground up An understanding of statistical tools is essential for engineers and scientists who often need to deal with data analysis over the course of their work. Statistics and Probability with Applications for Engineers and Scientists walks readers through a wide range of popular statistical techniques, explaining step-by-step how to generate, analyze, and interpret data for diverse applications in engineering and the natural sciences. Unique among books of this kind, Statistics and Probability with Applications for Engineers and Scientists covers descriptive statistics first, then goes on to discuss the fundamentals of probability theory. Along with case studies, examples, and real-world data sets, the book incorporates clear instructions on how to use the statistical packages Minitab® and Microsoft® Office Excel® to analyze various data sets. The book also features: • Detailed discussions on sampling distributions, statistical estimation of population parameters, hypothesis testing, reliability theory, statistical quality control including Phase I and Phase II control charts, and process capability indices • A clear presentation of nonparametric methods and simple and multiple linear regression methods, as well as a brief discussion on logistic regression method • Comprehensive guidance on the design of experiments, including randomized block designs, one- and two-way layout designs, Latin square designs, random effects and mixed effects models, factorial and fractional factorial designs, and response surface methodology • A companion website containing data sets for Minitab and Microsoft Office Excel, as well as JMP ® routines and results Assuming no background in probability and statistics, Statistics and Probability with Applications for Engineers and Scientists features a unique, yet tried-and-true, approach that is ideal for all undergraduate students as well as statistical practitioners who analyze and illustrate real-world data in engineering and the natural sciences.
Author | : Kumar Molugaram |
Publisher | : Butterworth-Heinemann |
Total Pages | : 555 |
Release | : 2017-03-03 |
Genre | : Computers |
ISBN | : 0128116420 |
Statistical Techniques for Transportation Engineering is written with a systematic approach in mind and covers a full range of data analysis topics, from the introductory level (basic probability, measures of dispersion, random variable, discrete and continuous distributions) through more generally used techniques (common statistical distributions, hypothesis testing), to advanced analysis and statistical modeling techniques (regression, AnoVa, and time series). The book also provides worked out examples and solved problems for a wide variety of transportation engineering challenges. - Demonstrates how to effectively interpret, summarize, and report transportation data using appropriate statistical descriptors - Teaches how to identify and apply appropriate analysis methods for transportation data - Explains how to evaluate transportation proposals and schemes with statistical rigor
Author | : Ka-Veng Yuen |
Publisher | : John Wiley & Sons |
Total Pages | : 320 |
Release | : 2010-02-22 |
Genre | : Mathematics |
ISBN | : 9780470824559 |
Bayesian methods are a powerful tool in many areas of science and engineering, especially statistical physics, medical sciences, electrical engineering, and information sciences. They are also ideal for civil engineering applications, given the numerous types of modeling and parametric uncertainty in civil engineering problems. For example, earthquake ground motion cannot be predetermined at the structural design stage. Complete wind pressure profiles are difficult to measure under operating conditions. Material properties can be difficult to determine to a very precise level – especially concrete, rock, and soil. For air quality prediction, it is difficult to measure the hourly/daily pollutants generated by cars and factories within the area of concern. It is also difficult to obtain the updated air quality information of the surrounding cities. Furthermore, the meteorological conditions of the day for prediction are also uncertain. These are just some of the civil engineering examples to which Bayesian probabilistic methods are applicable. Familiarizes readers with the latest developments in the field Includes identification problems for both dynamic and static systems Addresses challenging civil engineering problems such as modal/model updating Presents methods applicable to mechanical and aerospace engineering Gives engineers and engineering students a concrete sense of implementation Covers real-world case studies in civil engineering and beyond, such as: structural health monitoring seismic attenuation finite-element model updating hydraulic jump artificial neural network for damage detection air quality prediction Includes other insightful daily-life examples Companion website with MATLAB code downloads for independent practice Written by a leading expert in the use of Bayesian methods for civil engineering problems This book is ideal for researchers and graduate students in civil and mechanical engineering or applied probability and statistics. Practicing engineers interested in the application of statistical methods to solve engineering problems will also find this to be a valuable text. MATLAB code and lecture materials for instructors available at http://www.wiley.com/go/yuen