Applications Of Pulse Coupled Neural Networks
Download Applications Of Pulse Coupled Neural Networks full books in PDF, epub, and Kindle. Read online free Applications Of Pulse Coupled Neural Networks ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Yide Ma |
Publisher | : Springer Science & Business Media |
Total Pages | : 206 |
Release | : 2011-09-02 |
Genre | : Computers |
ISBN | : 3642137458 |
"Applications of Pulse-Coupled Neural Networks" explores the fields of image processing, including image filtering, image segmentation, image fusion, image coding, image retrieval, and biometric recognition, and the role of pulse-coupled neural networks in these fields. This book is intended for researchers and graduate students in artificial intelligence, pattern recognition, electronic engineering, and computer science. Prof. Yide Ma conducts research on intelligent information processing, biomedical image processing, and embedded system development at the School of Information Science and Engineering, Lanzhou University, China.
Author | : Thomas Lindblad |
Publisher | : Springer Science & Business Media |
Total Pages | : 184 |
Release | : 2005-08-02 |
Genre | : Technology & Engineering |
ISBN | : 9783540242185 |
* Weitere Angaben Verfasser: Thomas Lindblad is a professor at the Royal Institute of Technology (Physics) in Stockholm. Working and teaching nuclear and environmental physics his main interest is with sensors, signal processing and intelligent data analysis of torrent data from experiments on-line accelerators, in space, etc. Jason Kinser is an associate professor at George Mason University. He has developed a plethora of image processing applications in the medical, military, and industrial fields. He has been responsible for the conversion of PCNN theory into practical applications providing many improvements in both speed and performance
Author | : Himanshu Singh |
Publisher | : Apress |
Total Pages | : 177 |
Release | : 2019-02-26 |
Genre | : Computers |
ISBN | : 1484241495 |
Gain insights into image-processing methodologies and algorithms, using machine learning and neural networks in Python. This book begins with the environment setup, understanding basic image-processing terminology, and exploring Python concepts that will be useful for implementing the algorithms discussed in the book. You will then cover all the core image processing algorithms in detail before moving onto the biggest computer vision library: OpenCV. You’ll see the OpenCV algorithms and how to use them for image processing. The next section looks at advanced machine learning and deep learning methods for image processing and classification. You’ll work with concepts such as pulse coupled neural networks, AdaBoost, XG boost, and convolutional neural networks for image-specific applications. Later you’ll explore how models are made in real time and then deployed using various DevOps tools. All the concepts in Practical Machine Learning and Image Processing are explained using real-life scenarios. After reading this book you will be able to apply image processing techniques and make machine learning models for customized application. What You Will LearnDiscover image-processing algorithms and their applications using Python Explore image processing using the OpenCV library Use TensorFlow, scikit-learn, NumPy, and other libraries Work with machine learning and deep learning algorithms for image processing Apply image-processing techniques to five real-time projects Who This Book Is For Data scientists and software developers interested in image processing and computer vision.
Author | : Kevin L. Priddy |
Publisher | : SPIE Press |
Total Pages | : 184 |
Release | : 2005 |
Genre | : Computers |
ISBN | : 9780819459879 |
This tutorial text provides the reader with an understanding of artificial neural networks (ANNs), and their application, beginning with the biological systems which inspired them, through the learning methods that have been developed, and the data collection processes, to the many ways ANNs are being used today. The material is presented with a minimum of math (although the mathematical details are included in the appendices for interested readers), and with a maximum of hands-on experience. All specialized terms are included in a glossary. The result is a highly readable text that will teach the engineer the guiding principles necessary to use and apply artificial neural networks.
Author | : Thangaprakash Sengodan |
Publisher | : Springer Nature |
Total Pages | : 1335 |
Release | : 2021-02-26 |
Genre | : Technology & Engineering |
ISBN | : 9811590192 |
This book comprises select proceedings of the International Conference on Advances in Electrical and Computer Technologies 2020 (ICAECT 2020). The papers presented in this book are peer-reviewed and cover latest research in electrical, electronics, communication and computer engineering. Topics covered include smart grids, soft computing techniques in power systems, smart energy management systems, power electronics, feedback control systems, biomedical engineering, geo informative systems, grid computing, data mining, image and signal processing, video processing, computer vision, pattern recognition, cloud computing, pervasive computing, intelligent systems, artificial intelligence, neural network and fuzzy logic, broad band communication, mobile and optical communication, network security, VLSI, embedded systems, optical networks and wireless communication. The volume can be useful for students and researchers working in the different overlapping areas of electrical, electronics and communication engineering.
Author | : Jayadeva |
Publisher | : Springer |
Total Pages | : 221 |
Release | : 2016-10-12 |
Genre | : Technology & Engineering |
ISBN | : 3319461869 |
This book provides a systematic and focused study of the various aspects of twin support vector machines (TWSVM) and related developments for classification and regression. In addition to presenting most of the basic models of TWSVM and twin support vector regression (TWSVR) available in the literature, it also discusses the important and challenging applications of this new machine learning methodology. A chapter on “Additional Topics” has been included to discuss kernel optimization and support tensor machine topics, which are comparatively new but have great potential in applications. It is primarily written for graduate students and researchers in the area of machine learning and related topics in computer science, mathematics, electrical engineering, management science and finance.
Author | : Paul R. Prucnal |
Publisher | : CRC Press |
Total Pages | : 412 |
Release | : 2017-05-08 |
Genre | : Science |
ISBN | : 1498725244 |
This book sets out to build bridges between the domains of photonic device physics and neural networks, providing a comprehensive overview of the emerging field of "neuromorphic photonics." It includes a thorough discussion of evolution of neuromorphic photonics from the advent of fiber-optic neurons to today’s state-of-the-art integrated laser neurons, which are a current focus of international research. Neuromorphic Photonics explores candidate interconnection architectures and devices for integrated neuromorphic networks, along with key functionality such as learning. It is written at a level accessible to graduate students, while also intending to serve as a comprehensive reference for experts in the field.
Author | : Thomas Lindblad |
Publisher | : Springer Science & Business Media |
Total Pages | : 246 |
Release | : 2013-05-13 |
Genre | : Technology & Engineering |
ISBN | : 3642368778 |
Image processing algorithms based on the mammalian visual cortex are powerful tools for extraction information and manipulating images. This book reviews the neural theory and translates them into digital models. Applications are given in areas of image recognition, foveation, image fusion and information extraction. The third edition reflects renewed international interest in pulse image processing with updated sections presenting several newly developed applications. This edition also introduces a suite of Python scripts that assist readers in replicating results presented in the text and to further develop their own applications.
Author | : Wulfram Gerstner |
Publisher | : Cambridge University Press |
Total Pages | : 498 |
Release | : 2002-08-15 |
Genre | : Computers |
ISBN | : 9780521890793 |
Neurons in the brain communicate by short electrical pulses, the so-called action potentials or spikes. How can we understand the process of spike generation? How can we understand information transmission by neurons? What happens if thousands of neurons are coupled together in a seemingly random network? How does the network connectivity determine the activity patterns? And, vice versa, how does the spike activity influence the connectivity pattern? These questions are addressed in this 2002 introduction to spiking neurons aimed at those taking courses in computational neuroscience, theoretical biology, biophysics, or neural networks. The approach will suit students of physics, mathematics, or computer science; it will also be useful for biologists who are interested in mathematical modelling. The text is enhanced by many worked examples and illustrations. There are no mathematical prerequisites beyond what the audience would meet as undergraduates: more advanced techniques are introduced in an elementary, concrete fashion when needed.
Author | : Srikanta Patnaik |
Publisher | : Springer Nature |
Total Pages | : 853 |
Release | : 2020-07-25 |
Genre | : Technology & Engineering |
ISBN | : 9811552436 |
This book gathers selected high-quality papers presented at the International Conference on Machine Learning and Computational Intelligence (ICMLCI-2019), jointly organized by Kunming University of Science and Technology and the Interscience Research Network, Bhubaneswar, India, from April 6 to 7, 2019. Addressing virtually all aspects of intelligent systems, soft computing and machine learning, the topics covered include: prediction; data mining; information retrieval; game playing; robotics; learning methods; pattern visualization; automated knowledge acquisition; fuzzy, stochastic and probabilistic computing; neural computing; big data; social networks and applications of soft computing in various areas.