Applications of NeutroGeometry and AntiGeometry in Real World
Author | : Erick Gonzalez-Caballero |
Publisher | : Infinite Study |
Total Pages | : 19 |
Release | : 2023-01-01 |
Genre | : Mathematics |
ISBN | : |
NeutroGeometries are those geometric structures where at least one definition, axiom, property, theorem, among others, is only partially satisfied. In AntiGeometries at least one of these concepts is never satisfied. Smarandache Geometry is a geometric structure where at least one axiom or theorem behaves differently in the same space, either partially true and partially false, or totally false but its negation done in many ways. This paper offers examples in images of nature, everyday objects, and celestial bodies where the existence of Smarandechean or NeutroGeometric structures in our universe is revealed. On the other hand, a practical study of surfaces with characteristics of NeutroGeometry is carried out, based on the properties or more specifically NeutroProperties of the famous quadrilaterals of Saccheri and Lambert on these surfaces. The article contributes to demonstrating the importance of building a theory such as NeutroGeometries or Smarandache Geometries because it would allow us to study geometric structures where the well-known Euclidean, Hyperbolic or Elliptic geometries are not enough to capture properties of elements that are part of the universe, but they have sense only within a NeutroGeometric framework. It also offers an axiomatic option to the Riemannian idea of Two-Dimensional Manifolds. In turn, we prove some properties of the NeutroGeometries and the materialization of the symmetric triad