Applications in Reliability and Statistical Computing

Applications in Reliability and Statistical Computing
Author: Hoang Pham
Publisher: Springer Nature
Total Pages: 310
Release: 2023-02-15
Genre: Technology & Engineering
ISBN: 3031212320

This book discusses practical applications of reliability and statistical methods and techniques in various disciplines, using machine learning, artificial intelligence, optimization, and other computation methods. Bringing together research from international experts, each chapter aims to cover both methods and practical aspects on reliability or statistical computations with emphasis on applications. 5G and IoT are set to generate an estimated 1 billion terabytes of data by 2025 and companies continue to search for new techniques and tools that can help them practice data collection effectively in promoting their business. This book explores the era of big data through reliability and statistical computing, showcasing how almost all applications in our daily life have experienced a dramatic shift in the past two decades to a truly global industry. Including numerous illustrations and worked examples, the book is of interest to researchers, practicing engineers, and postgraduate students in the fields of reliability engineering, statistical computing, and machine learning.

Statistical Reliability Engineering

Statistical Reliability Engineering
Author: Hoang Pham
Publisher: Springer Nature
Total Pages: 497
Release: 2021-08-13
Genre: Technology & Engineering
ISBN: 3030769046

This book presents the state-of-the-art methodology and detailed analytical models and methods used to assess the reliability of complex systems and related applications in statistical reliability engineering. It is a textbook based mainly on the author’s recent research and publications as well as experience of over 30 years in this field. The book covers a wide range of methods and models in reliability, and their applications, including: statistical methods and model selection for machine learning; models for maintenance and software reliability; statistical reliability estimation of complex systems; and statistical reliability analysis of k out of n systems, standby systems and repairable systems. Offering numerous examples and solved problems within each chapter, this comprehensive text provides an introduction to reliability engineering graduate students, a reference for data scientists and reliability engineers, and a thorough guide for researchers and instructors in the field.

Probability and Statistics with Reliability, Queuing, and Computer Science Applications

Probability and Statistics with Reliability, Queuing, and Computer Science Applications
Author: Kishor S. Trivedi
Publisher: John Wiley & Sons
Total Pages: 881
Release: 2016-07-11
Genre: Computers
ISBN: 0471460818

An accessible introduction to probability, stochastic processes, and statistics for computer science and engineering applications Second edition now also available in Paperback. This updated and revised edition of the popular classic first edition relates fundamental concepts in probability and statistics to the computer sciences and engineering. The author uses Markov chains and other statistical tools to illustrate processes in reliability of computer systems and networks, fault tolerance, and performance. This edition features an entirely new section on stochastic Petri nets—as well as new sections on system availability modeling, wireless system modeling, numerical solution techniques for Markov chains, and software reliability modeling, among other subjects. Extensive revisions take new developments in solution techniques and applications into account and bring this work totally up to date. It includes more than 200 worked examples and self-study exercises for each section. Probability and Statistics with Reliability, Queuing and Computer Science Applications, Second Edition offers a comprehensive introduction to probability, stochastic processes, and statistics for students of computer science, electrical and computer engineering, and applied mathematics. Its wealth of practical examples and up-to-date information makes it an excellent resource for practitioners as well. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.

Reliability and Statistical Computing

Reliability and Statistical Computing
Author: Hoang Pham
Publisher: Springer Nature
Total Pages: 325
Release: 2020-03-28
Genre: Technology & Engineering
ISBN: 3030434125

This book presents the latest developments in both qualitative and quantitative computational methods for reliability and statistics, as well as their applications. Consisting of contributions from active researchers and experienced practitioners in the field, it fills the gap between theory and practice and explores new research challenges in reliability and statistical computing. The book consists of 18 chapters. It covers (1) modeling in and methods for reliability computing, with chapters dedicated to predicted reliability modeling, optimal maintenance models, and mechanical reliability and safety analysis; (2) statistical computing methods, including machine learning techniques and deep learning approaches for sentiment analysis and recommendation systems; and (3) applications and case studies, such as modeling innovation paths of European firms, aircraft components, bus safety analysis, performance prediction in textile finishing processes, and movie recommendation systems. Given its scope, the book will appeal to postgraduates, researchers, professors, scientists, and practitioners in a range of fields, including reliability engineering and management, maintenance engineering, quality management, statistics, computer science and engineering, mechanical engineering, business analytics, and data science.

Statistical Methods for Reliability Data

Statistical Methods for Reliability Data
Author: William Q. Meeker
Publisher: John Wiley & Sons
Total Pages: 708
Release: 2022-01-24
Genre: Technology & Engineering
ISBN: 1118594487

An authoritative guide to the most recent advances in statistical methods for quantifying reliability Statistical Methods for Reliability Data, Second Edition (SMRD2) is an essential guide to the most widely used and recently developed statistical methods for reliability data analysis and reliability test planning. Written by three experts in the area, SMRD2 updates and extends the long- established statistical techniques and shows how to apply powerful graphical, numerical, and simulation-based methods to a range of applications in reliability. SMRD2 is a comprehensive resource that describes maximum likelihood and Bayesian methods for solving practical problems that arise in product reliability and similar areas of application. SMRD2 illustrates methods with numerous applications and all the data sets are available on the book’s website. Also, SMRD2 contains an extensive collection of exercises that will enhance its use as a course textbook. The SMRD2's website contains valuable resources, including R packages, Stan model codes, presentation slides, technical notes, information about commercial software for reliability data analysis, and csv files for the 93 data sets used in the book's examples and exercises. The importance of statistical methods in the area of engineering reliability continues to grow and SMRD2 offers an updated guide for, exploring, modeling, and drawing conclusions from reliability data. SMRD2 features: Contains a wealth of information on modern methods and techniques for reliability data analysis Offers discussions on the practical problem-solving power of various Bayesian inference methods Provides examples of Bayesian data analysis performed using the R interface to the Stan system based on Stan models that are available on the book's website Includes helpful technical-problem and data-analysis exercise sets at the end of every chapter Presents illustrative computer graphics that highlight data, results of analyses, and technical concepts Written for engineers and statisticians in industry and academia, Statistical Methods for Reliability Data, Second Edition offers an authoritative guide to this important topic.

Applications in Reliability and Statistical Computing

Applications in Reliability and Statistical Computing
Author: Hoang Pham
Publisher:
Total Pages: 0
Release: 2023
Genre:
ISBN: 9783031212338

This book discusses practical applications of reliability and statistical methods and techniques in various disciplines, using machine learning, artificial intelligence, optimization, and other computation methods. Bringing together research from international experts, each chapter aims to cover both methods and practical aspects on reliability or statistical computations with emphasis on applications. 5G and IoT are set to generate an estimated 1 billion terabytes of data by 2025 and companies continue to search for new techniques and tools that can help them practice data collection effectively in promoting their business. This book explores the era of big data through reliability and statistical computing, showcasing how almost all applications in our daily life have experienced a dramatic shift in the past two decades to a truly global industry. Including numerous illustrations and worked examples, the book is of interest to researchers, practicing engineers, and postgraduate students in the fields of reliability engineering, statistical computing, and machine learning.

Mathematical and Statistical Models and Methods in Reliability

Mathematical and Statistical Models and Methods in Reliability
Author: V.V. Rykov
Publisher: Springer Science & Business Media
Total Pages: 465
Release: 2010-11-02
Genre: Technology & Engineering
ISBN: 0817649719

The book is a selection of invited chapters, all of which deal with various aspects of mathematical and statistical models and methods in reliability. Written by renowned experts in the field of reliability, the contributions cover a wide range of applications, reflecting recent developments in areas such as survival analysis, aging, lifetime data analysis, artificial intelligence, medicine, carcinogenesis studies, nuclear power, financial modeling, aircraft engineering, quality control, and transportation. Mathematical and Statistical Models and Methods in Reliability is an excellent reference text for researchers and practitioners in applied probability and statistics, industrial statistics, engineering, medicine, finance, transportation, the oil and gas industry, and artificial intelligence.

Statistical Methods in Software Engineering

Statistical Methods in Software Engineering
Author: Nozer D. Singpurwalla
Publisher: Springer Science & Business Media
Total Pages: 316
Release: 1999-08-05
Genre: Computers
ISBN: 0387988238

In establishing a framework for dealing with uncertainties in software engineering, and for using quantitative measures in related decision-making, this text puts into perspective the large body of work having statistical content that is relevant to software engineering. Aimed at computer scientists, software engineers, and reliability analysts who have some exposure to probability and statistics, the content is pitched at a level appropriate for research workers in software reliability, and for graduate level courses in applied statistics computer science, operations research, and software engineering.

Software Reliability Modeling

Software Reliability Modeling
Author: Shigeru Yamada
Publisher: Springer Science & Business Media
Total Pages: 98
Release: 2013-10-24
Genre: Mathematics
ISBN: 4431545654

Software reliability is one of the most important characteristics of software product quality. Its measurement and management technologies during the software product life cycle are essential to produce and maintain quality/reliable software systems. Part 1 of this book introduces several aspects of software reliability modeling and its applications. Hazard rate and nonhomogeneous Poisson process (NHPP) models are investigated particularly for quantitative software reliability assessment. Further, imperfect debugging and software availability models are discussed with reference to incorporating practical factors of dynamic software behavior. Three software management problems are presented as application technologies of software reliability models: the optimal software release problem, the statistical testing-progress control, and the optimal testing-effort allocation problem. Part 2 of the book describes several recent developments in software reliability modeling and their applications as quantitative techniques for software quality/reliability measurement and assessment. The discussion includes a quality engineering analysis of human factors affecting software reliability during the design review phase, which is the upper stream of software development, as well as software reliability growth models based on stochastic differential equations and discrete calculus during the testing phase, which is the lower stream. The final part of the book provides an illustration of quality-oriented software management analysis by applying the multivariate analysis method and the existing software reliability growth models to actual process monitoring data.

Reliability and Statistical Computing

Reliability and Statistical Computing
Author:
Publisher:
Total Pages: 325
Release: 2020
Genre: Computer systems
ISBN: 9783030434137

This book presents the latest developments in both qualitative and quantitative computational methods for reliability and statistics, as well as their applications. Consisting of contributions from active researchers and experienced practitioners in the field, it fills the gap between theory and practice and explores new research challenges in reliability and statistical computing. The book consists of 18 chapters. It covers (1) modeling in and methods for reliability computing, with chapters dedicated to predicted reliability modeling, optimal maintenance models, and mechanical reliability and safety analysis; (2) statistical computing methods, including machine learning techniques and deep learning approaches for sentiment analysis and recommendation systems; and (3) applications and case studies, such as modeling innovation paths of European firms, aircraft components, bus safety analysis, performance prediction in textile finishing processes, and movie recommendation systems. Given its scope, the book will appeal to postgraduates, researchers, professors, scientists, and practitioners in a range of fields, including reliability engineering and management, maintenance engineering, quality management, statistics, computer science and engineering, mechanical engineering, business analytics, and data science.