Apache Spark 2.x Cookbook

Apache Spark 2.x Cookbook
Author: Rishi Yadav
Publisher: Packt Publishing Ltd
Total Pages: 288
Release: 2017-05-31
Genre: Computers
ISBN: 1787127516

Over 70 recipes to help you use Apache Spark as your single big data computing platform and master its libraries About This Book This book contains recipes on how to use Apache Spark as a unified compute engine Cover how to connect various source systems to Apache Spark Covers various parts of machine learning including supervised/unsupervised learning & recommendation engines Who This Book Is For This book is for data engineers, data scientists, and those who want to implement Spark for real-time data processing. Anyone who is using Spark (or is planning to) will benefit from this book. The book assumes you have a basic knowledge of Scala as a programming language. What You Will Learn Install and configure Apache Spark with various cluster managers & on AWS Set up a development environment for Apache Spark including Databricks Cloud notebook Find out how to operate on data in Spark with schemas Get to grips with real-time streaming analytics using Spark Streaming & Structured Streaming Master supervised learning and unsupervised learning using MLlib Build a recommendation engine using MLlib Graph processing using GraphX and GraphFrames libraries Develop a set of common applications or project types, and solutions that solve complex big data problems In Detail While Apache Spark 1.x gained a lot of traction and adoption in the early years, Spark 2.x delivers notable improvements in the areas of API, schema awareness, Performance, Structured Streaming, and simplifying building blocks to build better, faster, smarter, and more accessible big data applications. This book uncovers all these features in the form of structured recipes to analyze and mature large and complex sets of data. Starting with installing and configuring Apache Spark with various cluster managers, you will learn to set up development environments. Further on, you will be introduced to working with RDDs, DataFrames and Datasets to operate on schema aware data, and real-time streaming with various sources such as Twitter Stream and Apache Kafka. You will also work through recipes on machine learning, including supervised learning, unsupervised learning & recommendation engines in Spark. Last but not least, the final few chapters delve deeper into the concepts of graph processing using GraphX, securing your implementations, cluster optimization, and troubleshooting. Style and approach This book is packed with intuitive recipes supported with line-by-line explanations to help you understand Spark 2.x's real-time processing capabilities and deploy scalable big data solutions. This is a valuable resource for data scientists and those working on large-scale data projects.

Apache Spark 2.x Machine Learning Cookbook

Apache Spark 2.x Machine Learning Cookbook
Author: Siamak Amirghodsi
Publisher: Packt Publishing Ltd
Total Pages: 658
Release: 2017-09-22
Genre: Computers
ISBN: 1782174605

Simplify machine learning model implementations with Spark About This Book Solve the day-to-day problems of data science with Spark This unique cookbook consists of exciting and intuitive numerical recipes Optimize your work by acquiring, cleaning, analyzing, predicting, and visualizing your data Who This Book Is For This book is for Scala developers with a fairly good exposure to and understanding of machine learning techniques, but lack practical implementations with Spark. A solid knowledge of machine learning algorithms is assumed, as well as hands-on experience of implementing ML algorithms with Scala. However, you do not need to be acquainted with the Spark ML libraries and ecosystem. What You Will Learn Get to know how Scala and Spark go hand-in-hand for developers when developing ML systems with Spark Build a recommendation engine that scales with Spark Find out how to build unsupervised clustering systems to classify data in Spark Build machine learning systems with the Decision Tree and Ensemble models in Spark Deal with the curse of high-dimensionality in big data using Spark Implement Text analytics for Search Engines in Spark Streaming Machine Learning System implementation using Spark In Detail Machine learning aims to extract knowledge from data, relying on fundamental concepts in computer science, statistics, probability, and optimization. Learning about algorithms enables a wide range of applications, from everyday tasks such as product recommendations and spam filtering to cutting edge applications such as self-driving cars and personalized medicine. You will gain hands-on experience of applying these principles using Apache Spark, a resilient cluster computing system well suited for large-scale machine learning tasks. This book begins with a quick overview of setting up the necessary IDEs to facilitate the execution of code examples that will be covered in various chapters. It also highlights some key issues developers face while working with machine learning algorithms on the Spark platform. We progress by uncovering the various Spark APIs and the implementation of ML algorithms with developing classification systems, recommendation engines, text analytics, clustering, and learning systems. Toward the final chapters, we'll focus on building high-end applications and explain various unsupervised methodologies and challenges to tackle when implementing with big data ML systems. Style and approach This book is packed with intuitive recipes supported with line-by-line explanations to help you understand how to optimize your work flow and resolve problems when working with complex data modeling tasks and predictive algorithms. This is a valuable resource for data scientists and those working on large scale data projects.

Apache Spark Deep Learning Cookbook

Apache Spark Deep Learning Cookbook
Author: Ahmed Sherif
Publisher: Packt Publishing Ltd
Total Pages: 462
Release: 2018-07-13
Genre: Computers
ISBN: 1788471555

A solution-based guide to put your deep learning models into production with the power of Apache Spark Key Features Discover practical recipes for distributed deep learning with Apache Spark Learn to use libraries such as Keras and TensorFlow Solve problems in order to train your deep learning models on Apache Spark Book Description With deep learning gaining rapid mainstream adoption in modern-day industries, organizations are looking for ways to unite popular big data tools with highly efficient deep learning libraries. As a result, this will help deep learning models train with higher efficiency and speed. With the help of the Apache Spark Deep Learning Cookbook, you’ll work through specific recipes to generate outcomes for deep learning algorithms, without getting bogged down in theory. From setting up Apache Spark for deep learning to implementing types of neural net, this book tackles both common and not so common problems to perform deep learning on a distributed environment. In addition to this, you’ll get access to deep learning code within Spark that can be reused to answer similar problems or tweaked to answer slightly different problems. You will also learn how to stream and cluster your data with Spark. Once you have got to grips with the basics, you’ll explore how to implement and deploy deep learning models, such as Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) in Spark, using popular libraries such as TensorFlow and Keras. By the end of the book, you'll have the expertise to train and deploy efficient deep learning models on Apache Spark. What you will learn Set up a fully functional Spark environment Understand practical machine learning and deep learning concepts Apply built-in machine learning libraries within Spark Explore libraries that are compatible with TensorFlow and Keras Explore NLP models such as Word2vec and TF-IDF on Spark Organize dataframes for deep learning evaluation Apply testing and training modeling to ensure accuracy Access readily available code that may be reusable Who this book is for If you’re looking for a practical and highly useful resource for implementing efficiently distributed deep learning models with Apache Spark, then the Apache Spark Deep Learning Cookbook is for you. Knowledge of the core machine learning concepts and a basic understanding of the Apache Spark framework is required to get the best out of this book. Additionally, some programming knowledge in Python is a plus.

Spark SQL 2.x Fundamentals and Cookbook

Spark SQL 2.x Fundamentals and Cookbook
Author: HadoopExam Learning Resources
Publisher: HadoopExam Learning Resources
Total Pages: 162
Release: 2018-09-02
Genre:
ISBN:

Apache Spark is one of the fastest growing technology in BigData computing world. It support multiple programming languages like Java, Scala, Python and R. Hence, many existing and new framework started to integrate Spark platform as well in their platform e.g. Hadoop, Cassandra, EMR etc. While creating Spark certification material HadoopExam technical team found that there is no proper material and book is available for the Spark SQL (version 2.x) which covers the concepts as well as use of various features and found difficulty in creating the material. Therefore, they decided to create full length book for Spark SQL and outcome of that is this book. In this book technical team try to cover both fundamental concepts of Spark SQL engine and many exercises approx. 35+ so that most of the programming features can be covered. There are approximately 35 exercises and total 15 chapters which covers the programming aspects of SparkSQL. All the exercises given in this book are written using Scala. However, concepts remain same even if you are using different programming language. This book is good for following audiance - Data scientists - Spark Developer - Data Engineer - Data Analytics - Java/Python Developer - Scala Developer

Azure Databricks Cookbook

Azure Databricks Cookbook
Author: Phani Raj
Publisher: Packt Publishing Ltd
Total Pages: 452
Release: 2021-09-17
Genre: Computers
ISBN: 178961855X

Get to grips with building and productionizing end-to-end big data solutions in Azure and learn best practices for working with large datasets Key FeaturesIntegrate with Azure Synapse Analytics, Cosmos DB, and Azure HDInsight Kafka Cluster to scale and analyze your projects and build pipelinesUse Databricks SQL to run ad hoc queries on your data lake and create dashboardsProductionize a solution using CI/CD for deploying notebooks and Azure Databricks Service to various environmentsBook Description Azure Databricks is a unified collaborative platform for performing scalable analytics in an interactive environment. The Azure Databricks Cookbook provides recipes to get hands-on with the analytics process, including ingesting data from various batch and streaming sources and building a modern data warehouse. The book starts by teaching you how to create an Azure Databricks instance within the Azure portal, Azure CLI, and ARM templates. You'll work through clusters in Databricks and explore recipes for ingesting data from sources, including files, databases, and streaming sources such as Apache Kafka and EventHub. The book will help you explore all the features supported by Azure Databricks for building powerful end-to-end data pipelines. You'll also find out how to build a modern data warehouse by using Delta tables and Azure Synapse Analytics. Later, you'll learn how to write ad hoc queries and extract meaningful insights from the data lake by creating visualizations and dashboards with Databricks SQL. Finally, you'll deploy and productionize a data pipeline as well as deploy notebooks and Azure Databricks service using continuous integration and continuous delivery (CI/CD). By the end of this Azure book, you'll be able to use Azure Databricks to streamline different processes involved in building data-driven apps. What you will learnRead and write data from and to various Azure resources and file formatsBuild a modern data warehouse with Delta Tables and Azure Synapse AnalyticsExplore jobs, stages, and tasks and see how Spark lazy evaluation worksHandle concurrent transactions and learn performance optimization in Delta tablesLearn Databricks SQL and create real-time dashboards in Databricks SQLIntegrate Azure DevOps for version control, deploying, and productionizing solutions with CI/CD pipelinesDiscover how to use RBAC and ACLs to restrict data accessBuild end-to-end data processing pipeline for near real-time data analyticsWho this book is for This recipe-based book is for data scientists, data engineers, big data professionals, and machine learning engineers who want to perform data analytics on their applications. Prior experience of working with Apache Spark and Azure is necessary to get the most out of this book.

Hadoop Real-World Solutions Cookbook

Hadoop Real-World Solutions Cookbook
Author: Tanmay Deshpande
Publisher: Packt Publishing Ltd
Total Pages: 290
Release: 2016-03-31
Genre: Computers
ISBN: 1784398004

Over 90 hands-on recipes to help you learn and master the intricacies of Apache Hadoop 2.X, YARN, Hive, Pig, Oozie, Flume, Sqoop, Apache Spark, and Mahout About This Book Implement outstanding Machine Learning use cases on your own analytics models and processes. Solutions to common problems when working with the Hadoop ecosystem. Step-by-step implementation of end-to-end big data use cases. Who This Book Is For Readers who have a basic knowledge of big data systems and want to advance their knowledge with hands-on recipes. What You Will Learn Installing and maintaining Hadoop 2.X cluster and its ecosystem. Write advanced Map Reduce programs and understand design patterns. Advanced Data Analysis using the Hive, Pig, and Map Reduce programs. Import and export data from various sources using Sqoop and Flume. Data storage in various file formats such as Text, Sequential, Parquet, ORC, and RC Files. Machine learning principles with libraries such as Mahout Batch and Stream data processing using Apache Spark In Detail Big data is the current requirement. Most organizations produce huge amount of data every day. With the arrival of Hadoop-like tools, it has become easier for everyone to solve big data problems with great efficiency and at minimal cost. Grasping Machine Learning techniques will help you greatly in building predictive models and using this data to make the right decisions for your organization. Hadoop Real World Solutions Cookbook gives readers insights into learning and mastering big data via recipes. The book not only clarifies most big data tools in the market but also provides best practices for using them. The book provides recipes that are based on the latest versions of Apache Hadoop 2.X, YARN, Hive, Pig, Sqoop, Flume, Apache Spark, Mahout and many more such ecosystem tools. This real-world-solution cookbook is packed with handy recipes you can apply to your own everyday issues. Each chapter provides in-depth recipes that can be referenced easily. This book provides detailed practices on the latest technologies such as YARN and Apache Spark. Readers will be able to consider themselves as big data experts on completion of this book. This guide is an invaluable tutorial if you are planning to implement a big data warehouse for your business. Style and approach An easy-to-follow guide that walks you through world of big data. Each tool in the Hadoop ecosystem is explained in detail and the recipes are placed in such a manner that readers can implement them sequentially. Plenty of reference links are provided for advanced reading.

DataBricks® PySpark 2.x Certification Practice Questions

DataBricks® PySpark 2.x Certification Practice Questions
Author:
Publisher: HadoopExam Learning Resources
Total Pages: 183
Release:
Genre: Business & Economics
ISBN:

This book contains the questions answers and some FAQ about the Databricks Spark Certification for version 2.x, which is the latest release from Apache Spark. In this book we will be having in total 75 practice questions. Almost all required question would have in detail explanation to the questions and answers, wherever required. Don’t consider this book as a guide, it is more of question and answer practice book. This book also give some references as well like how to prepare further to ensure that you clear the certification exam. This book will particularly focus on the Python version of the certification preparation material. Please note these are practice questions and not dumps, hence just memorizing the question and answers will not help in the real exam. You need to understand the concepts in detail as well as you should be able to solve the programming questions at the end in real worlds work you should be able to write code using PySpark whether you are Data Engineer, Data Analytics Engineer, Data Scientists or Programmer. Hence, take the opportunity to learn each question and also go through the explanation of the questions.

Hadoop: Data Processing and Modelling

Hadoop: Data Processing and Modelling
Author: Garry Turkington
Publisher: Packt Publishing Ltd
Total Pages: 979
Release: 2016-08-31
Genre: Computers
ISBN: 1787120457

Unlock the power of your data with Hadoop 2.X ecosystem and its data warehousing techniques across large data sets About This Book Conquer the mountain of data using Hadoop 2.X tools The authors succeed in creating a context for Hadoop and its ecosystem Hands-on examples and recipes giving the bigger picture and helping you to master Hadoop 2.X data processing platforms Overcome the challenging data processing problems using this exhaustive course with Hadoop 2.X Who This Book Is For This course is for Java developers, who know scripting, wanting a career shift to Hadoop - Big Data segment of the IT industry. So if you are a novice in Hadoop or an expert, this book will make you reach the most advanced level in Hadoop 2.X. What You Will Learn Best practices for setup and configuration of Hadoop clusters, tailoring the system to the problem at hand Integration with relational databases, using Hive for SQL queries and Sqoop for data transfer Installing and maintaining Hadoop 2.X cluster and its ecosystem Advanced Data Analysis using the Hive, Pig, and Map Reduce programs Machine learning principles with libraries such as Mahout and Batch and Stream data processing using Apache Spark Understand the changes involved in the process in the move from Hadoop 1.0 to Hadoop 2.0 Dive into YARN and Storm and use YARN to integrate Storm with Hadoop Deploy Hadoop on Amazon Elastic MapReduce and Discover HDFS replacements and learn about HDFS Federation In Detail As Marc Andreessen has said “Data is eating the world,” which can be witnessed today being the age of Big Data, businesses are producing data in huge volumes every day and this rise in tide of data need to be organized and analyzed in a more secured way. With proper and effective use of Hadoop, you can build new-improved models, and based on that you will be able to make the right decisions. The first module, Hadoop beginners Guide will walk you through on understanding Hadoop with very detailed instructions and how to go about using it. Commands are explained using sections called “What just happened” for more clarity and understanding. The second module, Hadoop Real World Solutions Cookbook, 2nd edition, is an essential tutorial to effectively implement a big data warehouse in your business, where you get detailed practices on the latest technologies such as YARN and Spark. Big data has become a key basis of competition and the new waves of productivity growth. Hence, once you get familiar with the basics and implement the end-to-end big data use cases, you will start exploring the third module, Mastering Hadoop. So, now the question is if you need to broaden your Hadoop skill set to the next level after you nail the basics and the advance concepts, then this course is indispensable. When you finish this course, you will be able to tackle the real-world scenarios and become a big data expert using the tools and the knowledge based on the various step-by-step tutorials and recipes. Style and approach This course has covered everything right from the basic concepts of Hadoop till you master the advance mechanisms to become a big data expert. The goal here is to help you learn the basic essentials using the step-by-step tutorials and from there moving toward the recipes with various real-world solutions for you. It covers all the important aspects of Hadoop from system designing and configuring Hadoop, machine learning principles with various libraries with chapters illustrated with code fragments and schematic diagrams. This is a compendious course to explore Hadoop from the basics to the most advanced techniques available in Hadoop 2.X.

Apache Spark 2.x Cookbook

Apache Spark 2.x Cookbook
Author: Rishi Yadav
Publisher: Packt Publishing Ltd
Total Pages: 288
Release: 2017-05-31
Genre: Computers
ISBN: 1787127516

Over 70 recipes to help you use Apache Spark as your single big data computing platform and master its libraries About This Book This book contains recipes on how to use Apache Spark as a unified compute engine Cover how to connect various source systems to Apache Spark Covers various parts of machine learning including supervised/unsupervised learning & recommendation engines Who This Book Is For This book is for data engineers, data scientists, and those who want to implement Spark for real-time data processing. Anyone who is using Spark (or is planning to) will benefit from this book. The book assumes you have a basic knowledge of Scala as a programming language. What You Will Learn Install and configure Apache Spark with various cluster managers & on AWS Set up a development environment for Apache Spark including Databricks Cloud notebook Find out how to operate on data in Spark with schemas Get to grips with real-time streaming analytics using Spark Streaming & Structured Streaming Master supervised learning and unsupervised learning using MLlib Build a recommendation engine using MLlib Graph processing using GraphX and GraphFrames libraries Develop a set of common applications or project types, and solutions that solve complex big data problems In Detail While Apache Spark 1.x gained a lot of traction and adoption in the early years, Spark 2.x delivers notable improvements in the areas of API, schema awareness, Performance, Structured Streaming, and simplifying building blocks to build better, faster, smarter, and more accessible big data applications. This book uncovers all these features in the form of structured recipes to analyze and mature large and complex sets of data. Starting with installing and configuring Apache Spark with various cluster managers, you will learn to set up development environments. Further on, you will be introduced to working with RDDs, DataFrames and Datasets to operate on schema aware data, and real-time streaming with various sources such as Twitter Stream and Apache Kafka. You will also work through recipes on machine learning, including supervised learning, unsupervised learning & recommendation engines in Spark. Last but not least, the final few chapters delve deeper into the concepts of graph processing using GraphX, securing your implementations, cluster optimization, and troubleshooting. Style and approach This book is packed with intuitive recipes supported with line-by-line explanations to help you understand Spark 2.x's real-time processing capabilities and deploy scalable big data solutions. This is a valuable resource for data scientists and those working on large-scale data projects.

Apache Spark 2.x Machine Learning Cookbook

Apache Spark 2.x Machine Learning Cookbook
Author: Siamak Amirghodsi
Publisher: Packt Publishing Ltd
Total Pages: 658
Release: 2017-09-22
Genre: Computers
ISBN: 1782174605

Simplify machine learning model implementations with Spark About This Book Solve the day-to-day problems of data science with Spark This unique cookbook consists of exciting and intuitive numerical recipes Optimize your work by acquiring, cleaning, analyzing, predicting, and visualizing your data Who This Book Is For This book is for Scala developers with a fairly good exposure to and understanding of machine learning techniques, but lack practical implementations with Spark. A solid knowledge of machine learning algorithms is assumed, as well as hands-on experience of implementing ML algorithms with Scala. However, you do not need to be acquainted with the Spark ML libraries and ecosystem. What You Will Learn Get to know how Scala and Spark go hand-in-hand for developers when developing ML systems with Spark Build a recommendation engine that scales with Spark Find out how to build unsupervised clustering systems to classify data in Spark Build machine learning systems with the Decision Tree and Ensemble models in Spark Deal with the curse of high-dimensionality in big data using Spark Implement Text analytics for Search Engines in Spark Streaming Machine Learning System implementation using Spark In Detail Machine learning aims to extract knowledge from data, relying on fundamental concepts in computer science, statistics, probability, and optimization. Learning about algorithms enables a wide range of applications, from everyday tasks such as product recommendations and spam filtering to cutting edge applications such as self-driving cars and personalized medicine. You will gain hands-on experience of applying these principles using Apache Spark, a resilient cluster computing system well suited for large-scale machine learning tasks. This book begins with a quick overview of setting up the necessary IDEs to facilitate the execution of code examples that will be covered in various chapters. It also highlights some key issues developers face while working with machine learning algorithms on the Spark platform. We progress by uncovering the various Spark APIs and the implementation of ML algorithms with developing classification systems, recommendation engines, text analytics, clustering, and learning systems. Toward the final chapters, we'll focus on building high-end applications and explain various unsupervised methodologies and challenges to tackle when implementing with big data ML systems. Style and approach This book is packed with intuitive recipes supported with line-by-line explanations to help you understand how to optimize your work flow and resolve problems when working with complex data modeling tasks and predictive algorithms. This is a valuable resource for data scientists and those working on large scale data projects.