Introduction to Applied Linear Algebra

Introduction to Applied Linear Algebra
Author: Stephen Boyd
Publisher: Cambridge University Press
Total Pages: 477
Release: 2018-06-07
Genre: Business & Economics
ISBN: 1316518965

A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.

Mathematics for Machine Learning

Mathematics for Machine Learning
Author: Marc Peter Deisenroth
Publisher: Cambridge University Press
Total Pages: 392
Release: 2020-04-23
Genre: Computers
ISBN: 1108569323

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

For All Practical Purposes

For All Practical Purposes
Author:
Publisher: Macmillan
Total Pages: 844
Release: 2009
Genre: Mathematics
ISBN: 9781429209007

By the Consortium for Mathematics and Its Applications.

Nature

Nature
Author: Sir Norman Lockyer
Publisher:
Total Pages: 568
Release: 1909
Genre: Electronic journals
ISBN: