Analytics for Managers

Analytics for Managers
Author: Peter C. Bell
Publisher: Routledge
Total Pages: 327
Release: 2013-01-04
Genre: Business & Economics
ISBN: 1136255346

Analytics is one of a number of terms which are used to describe a data-driven more scientific approach to management. Ability in analytics is an essential management skill: knowledge of data and analytics helps the manager to analyze decision situations, prevent problem situations from arising, identify new opportunities, and often enables many millions of dollars to be added to the bottom line for the organization. The objective of this book is to introduce analytics from the perspective of the general manager of a corporation. Rather than examine the details or attempt an encyclopaedic review of the field, this text emphasizes the strategic role that analytics is playing in globally competitive corporations today. The chapters of this book are organized in two main parts. The first part introduces a problem area and presents some basic analytical concepts that have been successfully used to address the problem area. The objective of this material is to provide the student, the manager of the future, with a general understanding of the tools and techniques used by the analyst.

Business Analytics for Managers

Business Analytics for Managers
Author: Wolfgang Jank
Publisher: Springer Science & Business Media
Total Pages: 199
Release: 2011-09-08
Genre: Business & Economics
ISBN: 1461404061

The practice of business is changing. More and more companies are amassing larger and larger amounts of data, and storing them in bigger and bigger data bases. Consequently, successful applications of data-driven decision making are plentiful and increasing on a daily basis. This book will motivate the need for data and data-driven solutions, using real data from real business scenarios. It will allow managers to better interact with personnel specializing in analytics by exposing managers and decision makers to the key ideas and concepts of data-driven decision making. Business Analytics for Managers conveys ideas and concepts from both statistics and data mining with the goal of extracting knowledge from real business data and actionable insight for managers. Throughout, emphasis placed on conveying data-driven thinking. While the ideas discussed in this book can be implemented using many different software solutions from many different vendors, it also provides a quick-start to one of the most powerful software solutions available. The main goals of this book are as follows: to excite managers and decision makers about the potential that resides in data and the value that data analytics can add to business processes and provide managers with a basic understanding of the main concepts of data analytics and a common language to convey data-driven decision problems so they can better communicate with personnel specializing in data mining or statistics.

Business Analytics for Managers

Business Analytics for Managers
Author: Gert Laursen
Publisher: John Wiley & Sons
Total Pages: 272
Release: 2010-07-13
Genre: Business & Economics
ISBN: 0470890614

"While business analytics sounds like a complex subject, this book provides a clear and non-intimidating overview of the topic. Following its advice will ensure that your organization knows the analytics it needs to succeed, and uses them in the service of key strategies and business processes. You too can go beyond reporting!"—Thomas H. Davenport, President's Distinguished Professor of IT and Management, Babson College; coauthor, Analytics at Work: Smarter Decisions, Better Results Deliver the right decision support to the right people at the right time Filled with examples and forward-thinking guidance from renowned BA leaders Gert Laursen and Jesper Thorlund, Business Analytics for Managers offers powerful techniques for making increasingly advanced use of information in order to survive any market conditions. Take a look inside and find: Proven guidance on developing an information strategy Tips for supporting your company's ability to innovate in the future by using analytics Practical insights for planning and implementing BA How to use information as a strategic asset Why BA is the next stepping-stone for companies in the information age today Discussion on BA's ever-increasing role Improve your business's decision making. Align your business processes with your business's objectives. Drive your company into a prosperous future. Taking BA from buzzword to enormous value-maker, Business Analytics for Managers helps you do it all with workable solutions that will add tremendous value to your business.

HBR Guide to Data Analytics Basics for Managers (HBR Guide Series)

HBR Guide to Data Analytics Basics for Managers (HBR Guide Series)
Author: Harvard Business Review
Publisher: Harvard Business Press
Total Pages: 169
Release: 2018-03-13
Genre: Business & Economics
ISBN: 1633694291

Don't let a fear of numbers hold you back. Today's business environment brings with it an onslaught of data. Now more than ever, managers must know how to tease insight from data--to understand where the numbers come from, make sense of them, and use them to inform tough decisions. How do you get started? Whether you're working with data experts or running your own tests, you'll find answers in the HBR Guide to Data Analytics Basics for Managers. This book describes three key steps in the data analysis process, so you can get the information you need, study the data, and communicate your findings to others. You'll learn how to: Identify the metrics you need to measure Run experiments and A/B tests Ask the right questions of your data experts Understand statistical terms and concepts Create effective charts and visualizations Avoid common mistakes

Big Data Analytics

Big Data Analytics
Author: Kim H. Pries
Publisher: CRC Press
Total Pages: 564
Release: 2015-02-05
Genre: Computers
ISBN: 1482234521

With this book, managers and decision makers are given the tools to make more informed decisions about big data purchasing initiatives. Big Data Analytics: A Practical Guide for Managers not only supplies descriptions of common tools, but also surveys the various products and vendors that supply the big data market.Comparing and contrasting the dif

Data Analytics in Project Management

Data Analytics in Project Management
Author: Seweryn Spalek
Publisher: Taylor & Francis Group/CRC Press
Total Pages: 11
Release: 2019-01-01
Genre: Business & Economics
ISBN: 1138307289

Data Analytics in Project Management. Data analytics plays a crucial role in business analytics. Without a rigid approach to analyzing data, there is no way to glean insights from it. Business analytics ensures the expected value of change while that change is implemented by projects in the business environment. Due to the significant increase in the number of projects and the amount of data associated with them, it is crucial to understand the areas in which data analytics can be applied in project management. This book addresses data analytics in relation to key areas, approaches, and methods in project management. It examines: • Risk management • The role of the project management office (PMO) • Planning and resource management • Project portfolio management • Earned value method (EVM) • Big Data • Software support • Data mining • Decision-making • Agile project management Data analytics in project management is of increasing importance and extremely challenging. There is rapid multiplication of data volumes, and, at the same time, the structure of the data is more complex. Digging through exabytes and zettabytes of data is a technological challenge in and of itself. How project management creates value through data analytics is crucial. Data Analytics in Project Management addresses the most common issues of applying data analytics in project management. The book supports theory with numerous examples and case studies and is a resource for academics and practitioners alike. It is a thought-provoking examination of data analytics applications that is valuable for projects today and those in the future.

Big Data Analytics: A Management Perspective

Big Data Analytics: A Management Perspective
Author: Francesco Corea
Publisher: Springer
Total Pages: 56
Release: 2016-05-24
Genre: Technology & Engineering
ISBN: 3319389920

This book is about innovation, big data, and data science seen from a business perspective. Big data is a buzzword nowadays, and there is a growing necessity within practitioners to understand better the phenomenon, starting from a clear stated definition. This book aims to be a starting reading for executives who want (and need) to keep the pace with the technological breakthrough introduced by new analytical techniques and piles of data. Common myths about big data will be explained, and a series of different strategic approaches will be provided. By browsing the book, it will be possible to learn how to implement a big data strategy and how to use a maturity framework to monitor the progress of the data science team, as well as how to move forward from one stage to the next. Crucial challenges related to big data will be discussed, where some of them are more general - such as ethics, privacy, and ownership – while others concern more specific business situations (e.g., initial public offering, growth strategies, etc.). The important matter of selecting the right skills and people for an effective team will be extensively explained, and practical ways to recognize them and understanding their personalities will be provided. Finally, few relevant technological future trends will be acknowledged (i.e., IoT, Artificial intelligence, blockchain, etc.), especially for their close relation with the increasing amount of data and our ability to analyse them faster and more effectively.

Project Management Analytics

Project Management Analytics
Author: Harjit Singh
Publisher: FT Press
Total Pages: 412
Release: 2015-11-12
Genre: Business & Economics
ISBN: 0134190491

To manage projects, you must not only control schedules and costs: you must also manage growing operational uncertainty. Today’s powerful analytics tools and methods can help you do all of this far more successfully. In Project Management Analytics, Harjit Singh shows how to bring greater evidence-based clarity and rationality to all your key decisions throughout the full project lifecycle. Singh identifies the components and characteristics of a good project decision and shows how to improve decisions by using predictive, prescriptive, statistical, and other methods. You’ll learn how to mitigate risks by identifying meaningful historical patterns and trends; optimize allocation and use of scarce resources within project constraints; automate data-driven decision-making processes based on huge data sets; and effectively handle multiple interrelated decision criteria. Singh also helps you integrate analytics into the project management methods you already use, combining today’s best analytical techniques with proven approaches such as PMI PMBOK® and Lean Six Sigma. Project managers can no longer rely on vague impressions or seat-of-the-pants intuition. Fortunately, you don’t have to. With Project Management Analytics, you can use facts, evidence, and knowledge—and get far better results. Achieve efficient, reliable, consistent, and fact-based project decision-making Systematically bring data and objective analysis to key project decisions Avoid “garbage in, garbage out” Properly collect, store, analyze, and interpret your project-related data Optimize multi-criteria decisions in large group environments Use the Analytic Hierarchy Process (AHP) to improve complex real-world decisions Streamline projects the way you streamline other business processes Leverage data-driven Lean Six Sigma to manage projects more effectively

Business Analytics for Sales and Marketing Managers

Business Analytics for Sales and Marketing Managers
Author: Gert H. N. Laursen
Publisher: John Wiley & Sons
Total Pages: 234
Release: 2011-03-16
Genre: Business & Economics
ISBN: 1118030389

Expert guidance on information management for optimum customer intelligence processes Providing essential guidance for information management, this book helps you understand the basics of information management, how to design and launch customer intelligence campaigns, and optimize existing customer intelligence processes. How to align information management with company strategy Examines how to get, grow, and retain valuable customers Discusses how to optimize existing customer intelligence processes Showing you how to make extensive use of data, statistical, and quantitative analysis, explanatory and predictive modeling, and fact-based management to drive decision making, Business Analytics for Customer Intelligence provides you with the tools your business needs to optimize you data driven processes.

Self-Service Data Analytics and Governance for Managers

Self-Service Data Analytics and Governance for Managers
Author: Nathan E. Myers
Publisher: John Wiley & Sons
Total Pages: 355
Release: 2021-06-02
Genre: Business & Economics
ISBN: 1119773296

Project governance, investment governance, and risk governance precepts are woven together in Self-Service Data Analytics and Governance for Managers, equipping managers to structure the inevitable chaos that can result as end-users take matters into their own hands Motivated by the promise of control and efficiency benefits, the widespread adoption of data analytics tools has created a new fast-moving environment of digital transformation in the finance, accounting, and operations world, where entire functions spend their days processing in spreadsheets. With the decentralization of application development as users perform their own analysis on data sets and automate spreadsheet processing without the involvement of IT, governance must be revisited to maintain process control in the new environment. In this book, emergent technologies that have given rise to data analytics and which form the evolving backdrop for digital transformation are introduced and explained, and prominent data analytics tools and capabilities will be demonstrated based on real world scenarios. The authors will provide a much-needed process discovery methodology describing how to survey the processing landscape to identify opportunities to deploy these capabilities. Perhaps most importantly, the authors will digest the mature existing data governance, IT governance, and model governance frameworks, but demonstrate that they do not comprehensively cover the full suite of data analytics builds, leaving a considerable governance gap. This book is meant to fill the gap and provide the reader with a fit-for-purpose and actionable governance framework to protect the value created by analytics deployment at scale. Project governance, investment governance, and risk governance precepts will be woven together to equip managers to structure the inevitable chaos that can result as end-users take matters into their own hands.