Analytic Inequalities

Analytic Inequalities
Author: Dragoslav S. Mitrinovic
Publisher: Springer Science & Business Media
Total Pages: 416
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642999700

The Theory of Inequalities began its development from the time when C. F. GACSS, A. L. CATCHY and P. L. CEBYSEY, to mention only the most important, laid the theoretical foundation for approximative meth ods. Around the end of the 19th and the beginning of the 20th century, numerous inequalities were proyed, some of which became classic, while most remained as isolated and unconnected results. It is almost generally acknowledged that the classic work "Inequali ties" by G. H. HARDY, J. E. LITTLEWOOD and G. POLYA, which appeared in 1934, transformed the field of inequalities from a collection of isolated formulas into a systematic discipline. The modern Theory of Inequalities, as well as the continuing and growing interest in this field, undoubtedly stem from this work. The second English edition of this book, published in 1952, was unchanged except for three appendices, totalling 10 pages, added at the end of the book. Today inequalities playa significant role in all fields of mathematics, and they present a very active and attractive field of research. J. DIEUDONNE, in his book "Calcullnfinitesimal" (Paris 1968), attri buted special significance to inequalities, adopting the method of exposi tion characterized by "majorer, minorer, approcher". Since 1934 a multitude of papers devoted to inequalities have been published: in some of them new inequalities were discovered, in others classical inequalities ,vere sharpened or extended, various inequalities ,vere linked by finding their common source, while some other papers gave a large number of miscellaneous applications.

Analytic Inequalities

Analytic Inequalities
Author: B.G. Pachpatte
Publisher: Springer Science & Business Media
Total Pages: 310
Release: 2012-01-05
Genre: Mathematics
ISBN: 9491216449

For more than a century, the study of various types of inequalities has been the focus of great attention by many researchers, interested both in the theory and its applications. In particular, there exists a very rich literature related to the well known Cebysev, Gruss, Trapezoid, Ostrowski, Hadamard and Jensen type inequalities. The present monograph is an attempt to organize recent progress related to the above inequalities, which we hope will widen the scope of their applications. The field to be covered is extremely wide and it is impossible to treat all of these here. The material included in the monograph is recent and hard to find in other books. It is accessible to any reader with a reasonable background in real analysis and an acquaintance with its related areas. All results are presented in an elementary way and the book could also serve as a textbook for an advanced graduate course. The book deserves a warm welcome to those who wish to learn the subject and it will also be most valuable as a source of reference in the field. It will be invaluable reading for mathematicians and engineers and also for graduate students, scientists and scholars wishing to keep abreast of this important area of research.

Analytic Inequalities

Analytic Inequalities
Author: Nicholas D. Kazarinoff
Publisher: Courier Corporation
Total Pages: 99
Release: 2014-08-19
Genre: Mathematics
ISBN: 0486798178

Mathematical analysis is largely a systematic study and exploration of inequalities — but for students the study of inequalities often remains a foreign country, difficult of access. This book is a passport to that country, offering a background on inequalities that will prepare undergraduates (and even high school students) to cope with the concepts of continuity, derivative, and integral. Beginning with explanations of the algebra of inequalities and conditional inequalities, the text introduces a pair of ancient theorems and their applications. Explorations of inequalities and calculus cover the number e, examples from the calculus, and approximations by polynomials. The final sections present modern theorems, including Bernstein's proof of the Weierstrass approximation theorem and the Cauchy, Bunyakovskii, Hölder, and Minkowski inequalities. Numerous figures, problems, and examples appear throughout the book, offering students an excellent foundation for further studies of calculus.

Analytic Inequalities and Their Applications in PDEs

Analytic Inequalities and Their Applications in PDEs
Author: Yuming Qin
Publisher: Birkhäuser
Total Pages: 570
Release: 2017-02-13
Genre: Mathematics
ISBN: 3319008315

This book presents a number of analytic inequalities and their applications in partial differential equations. These include integral inequalities, differential inequalities and difference inequalities, which play a crucial role in establishing (uniform) bounds, global existence, large-time behavior, decay rates and blow-up of solutions to various classes of evolutionary differential equations. Summarizing results from a vast number of literature sources such as published papers, preprints and books, it categorizes inequalities in terms of their different properties.

Classical and New Inequalities in Analysis

Classical and New Inequalities in Analysis
Author: Dragoslav S. Mitrinovic
Publisher: Springer Science & Business Media
Total Pages: 739
Release: 2013-04-17
Genre: Mathematics
ISBN: 9401710430

This volume presents a comprehensive compendium of classical and new inequalities as well as some recent extensions to well-known ones. Variations of inequalities ascribed to Abel, Jensen, Cauchy, Chebyshev, Hölder, Minkowski, Stefferson, Gram, Fejér, Jackson, Hardy, Littlewood, Po'lya, Schwarz, Hadamard and a host of others can be found in this volume. The more than 1200 cited references include many from the last ten years which appear in a book for the first time. The 30 chapters are all devoted to inequalities associated with a given classical inequality, or give methods for the derivation of new inequalities. Anyone interested in equalities, from student to professional, will find their favorite inequality and much more.

Inequalities from Complex Analysis

Inequalities from Complex Analysis
Author: John P. D'Angelo
Publisher:
Total Pages: 288
Release: 2002
Genre: Functions of complex variables
ISBN: 9780883850008

Inequalities from Complex Analysis is a careful, friendly exposition of some rather interesting mathematics. The author begins by defining the complex number field; he gives a novel presentation of some standard mathematical analysis in the early chapters. The development culminates with some results from recent research literature. The book provides complete yet comprehensible proofs as well as some surprising consequences of the results. One unifying theme is a complex variables analogue of Hilbert's seventeenth problem. Numerous examples, exercises and discussions of geometric reasoning aid the reader. The book is accessible to undergraduate mathematicians, as well as physicists and engineers.

Isoperimetric Inequalities

Isoperimetric Inequalities
Author: Isaac Chavel
Publisher: Cambridge University Press
Total Pages: 292
Release: 2001-07-23
Genre: Mathematics
ISBN: 9780521802673

This advanced introduction emphasizes the variety of ideas, techniques, and applications of the subject.

Analytic Methods for Diophantine Equations and Diophantine Inequalities

Analytic Methods for Diophantine Equations and Diophantine Inequalities
Author: H. Davenport
Publisher: Cambridge University Press
Total Pages: 160
Release: 2005-02-07
Genre: Mathematics
ISBN: 9780521605830

Harold Davenport was one of the truly great mathematicians of the twentieth century. Based on lectures he gave at the University of Michigan in the early 1960s, this book is concerned with the use of analytic methods in the study of integer solutions to Diophantine equations and Diophantine inequalities. It provides an excellent introduction to a timeless area of number theory that is still as widely researched today as it was when the book originally appeared. The three main themes of the book are Waring's problem and the representation of integers by diagonal forms, the solubility in integers of systems of forms in many variables, and the solubility in integers of diagonal inequalities. For the second edition of the book a comprehensive foreword has been added in which three prominent authorities describe the modern context and recent developments. A thorough bibliography has also been added.

Approximation Theory and Analytic Inequalities

Approximation Theory and Analytic Inequalities
Author: Themistocles M. Rassias
Publisher: Springer Nature
Total Pages: 546
Release: 2021-07-21
Genre: Mathematics
ISBN: 3030606228

This contributed volume focuses on various important areas of mathematics in which approximation methods play an essential role. It features cutting-edge research on a wide spectrum of analytic inequalities with emphasis on differential and integral inequalities in the spirit of functional analysis, operator theory, nonlinear analysis, variational calculus, featuring a plethora of applications, making this work a valuable resource. The reader will be exposed to convexity theory, polynomial inequalities, extremal problems, prediction theory, fixed point theory for operators, PDEs, fractional integral inequalities, multidimensional numerical integration, Gauss–Jacobi and Hermite–Hadamard type inequalities, Hilbert-type inequalities, and Ulam’s stability of functional equations. Contributions have been written by eminent researchers, providing up-to-date information and several results which may be useful to a wide readership including graduate students and researchers working in mathematics, physics, economics, operational research, and their interconnections.

Intelligent Comparisons: Analytic Inequalities

Intelligent Comparisons: Analytic Inequalities
Author: George A. Anastassiou
Publisher: Springer
Total Pages: 0
Release: 2016-10-15
Genre: Technology & Engineering
ISBN: 9783319370606

This monograph presents recent and original work of the author on inequalities in real, functional and fractional analysis. The chapters are self-contained and can be read independently, they include an extensive list of references per chapter. The book’s results are expected to find applications in many areas of applied and pure mathematics, especially in ordinary and partial differential equations and fractional differential equations. As such this monograph is suitable for researchers, graduate students, and seminars of the above subjects, as well as Science and Engineering University libraries.