Analytic Capacity, the Cauchy Transform, and Non-homogeneous Calderón–Zygmund Theory

Analytic Capacity, the Cauchy Transform, and Non-homogeneous Calderón–Zygmund Theory
Author: Xavier Tolsa
Publisher: Springer Science & Business Media
Total Pages: 402
Release: 2013-12-16
Genre: Mathematics
ISBN: 3319005960

This book studies some of the groundbreaking advances that have been made regarding analytic capacity and its relationship to rectifiability in the decade 1995–2005. The Cauchy transform plays a fundamental role in this area and is accordingly one of the main subjects covered. Another important topic, which may be of independent interest for many analysts, is the so-called non-homogeneous Calderón-Zygmund theory, the development of which has been largely motivated by the problems arising in connection with analytic capacity. The Painlevé problem, which was first posed around 1900, consists in finding a description of the removable singularities for bounded analytic functions in metric and geometric terms. Analytic capacity is a key tool in the study of this problem. In the 1960s Vitushkin conjectured that the removable sets which have finite length coincide with those which are purely unrectifiable. Moreover, because of the applications to the theory of uniform rational approximation, he posed the question as to whether analytic capacity is semiadditive. This work presents full proofs of Vitushkin’s conjecture and of the semiadditivity of analytic capacity, both of which remained open problems until very recently. Other related questions are also discussed, such as the relationship between rectifiability and the existence of principal values for the Cauchy transforms and other singular integrals. The book is largely self-contained and should be accessible for graduate students in analysis, as well as a valuable resource for researchers.

Quantization on Nilpotent Lie Groups

Quantization on Nilpotent Lie Groups
Author: Veronique Fischer
Publisher: Birkhäuser
Total Pages: 568
Release: 2016-03-08
Genre: Mathematics
ISBN: 3319295586

This book presents a consistent development of the Kohn-Nirenberg type global quantization theory in the setting of graded nilpotent Lie groups in terms of their representations. It contains a detailed exposition of related background topics on homogeneous Lie groups, nilpotent Lie groups, and the analysis of Rockland operators on graded Lie groups together with their associated Sobolev spaces. For the specific example of the Heisenberg group the theory is illustrated in detail. In addition, the book features a brief account of the corresponding quantization theory in the setting of compact Lie groups. The monograph is the winner of the 2014 Ferran Sunyer i Balaguer Prize.

Seminar of Mathematical Analysis

Seminar of Mathematical Analysis
Author: Genaro López Acedo
Publisher: Universidad de Sevilla
Total Pages: 322
Release: 2004
Genre: Mathematical analysis
ISBN: 9788447208579

This volume consists of the lecture notes of the Seminar on Mathematical Analysis which was held at the Universities of Malaga and Seville, Septembre 2002-February 2003.

Selected Papers on Analysis and Differential Equations

Selected Papers on Analysis and Differential Equations
Author: American Mathematical Society
Publisher: American Mathematical Soc.
Total Pages: 258
Release: 2010
Genre: Mathematics
ISBN: 082184881X

"Volume includes English translation of ten expository articles published in the Japanese journal Sugaku."

European Congress of Mathematics

European Congress of Mathematics
Author: Ari Laptev
Publisher: European Mathematical Society
Total Pages: 906
Release: 2005
Genre: Mathematics
ISBN: 9783037190098

The European Congress of Mathematics, held every four years, has established itself as a major international mathematical event. Following those in Paris, 1992, Budapest, 1996, and Barcelona, 2000, the Fourth European Congress of Mathematics took place in Stockholm, Sweden, June 27 to July 2, 2004, with 913 participants from 65 countries. Apart from seven plenary and thirty three invited lectures, there were six Science Lectures covering the most relevant aspects of mathematics in science and technology. Moreover, twelve projects of the EU Research Training Networks in Mathematics and Information Sciences, as well as Programmes from the European Science Foundation in Physical and Engineering Sciences, were presented. Ten EMS Prizes were awarded to young European mathematicians who have made a particular contribution to the progress of mathematics. Five of the prizewinners were independently chosen by the 4ECM Scientific Committee as plenary or invited speakers. The other five prizewinners gave their lectures in parallel sessions. Most of these contributions are now collected in this volume, providing a permanent record of so much that is best in mathematics today.

The Riesz Transform of Codimension Smaller Than One and the Wolff Energy

The Riesz Transform of Codimension Smaller Than One and the Wolff Energy
Author: Benjamin Jaye
Publisher: American Mathematical Soc.
Total Pages: 97
Release: 2020-09-28
Genre: Mathematics
ISBN: 1470442132

Fix $dgeq 2$, and $sin (d-1,d)$. The authors characterize the non-negative locally finite non-atomic Borel measures $mu $ in $mathbb R^d$ for which the associated $s$-Riesz transform is bounded in $L^2(mu )$ in terms of the Wolff energy. This extends the range of $s$ in which the Mateu-Prat-Verdera characterization of measures with bounded $s$-Riesz transform is known. As an application, the authors give a metric characterization of the removable sets for locally Lipschitz continuous solutions of the fractional Laplacian operator $(-Delta )^alpha /2$, $alpha in (1,2)$, in terms of a well-known capacity from non-linear potential theory. This result contrasts sharply with removability results for Lipschitz harmonic functions.

Modern Fourier Analysis

Modern Fourier Analysis
Author: Loukas Grafakos
Publisher: Springer Science & Business Media
Total Pages: 517
Release: 2009-04-28
Genre: Mathematics
ISBN: 0387094342

The great response to the publication of the book Classical and Modern Fourier Analysishasbeenverygratifying.IamdelightedthatSpringerhasofferedtopublish the second edition of this book in two volumes: Classical Fourier Analysis, 2nd Edition, and Modern Fourier Analysis, 2nd Edition. These volumes are mainly addressed to graduate students who wish to study Fourier analysis. This second volume is intended to serve as a text for a seco- semester course in the subject. It is designed to be a continuation of the rst v- ume. Chapters 1–5 in the rst volume contain Lebesgue spaces, Lorentz spaces and interpolation, maximal functions, Fourier transforms and distributions, an introd- tion to Fourier analysis on the n-torus, singular integrals of convolution type, and Littlewood–Paley theory. Armed with the knowledgeof this material, in this volume,the reader encounters more advanced topics in Fourier analysis whose development has led to important theorems. These theorems are proved in great detail and their proofs are organized to present the ow of ideas. The exercises at the end of each section enrich the material of the corresponding section and provide an opportunity to develop ad- tional intuition and deeper comprehension. The historical notes in each chapter are intended to provide an account of past research but also to suggest directions for further investigation. The auxiliary results referred to the appendix can be located in the rst volume.

Second Summer School in Analysis and Mathematical Physics

Second Summer School in Analysis and Mathematical Physics
Author: Salvador Pérez-Esteva
Publisher: American Mathematical Soc.
Total Pages: 288
Release: 2001
Genre: Mathematics
ISBN: 0821827081

For the second time, a Summer School in Analysis and Mathematical Physics took place at the Universidad Nacional Autonoma de Mexico in Cuernavaca. The purpose of the schools is to provide a bridge from standard graduate courses in mathematics to current research topics, particularly in analysis. The lectures are given by internationally recognized specialists in the fields. The topics covered in this Second Summer School include harmonic analysis, complex analysis, pseudodifferential operators, the mathematics of quantum chaos, and non-linear analysis.

The Hardy Space H1 with Non-doubling Measures and Their Applications

The Hardy Space H1 with Non-doubling Measures and Their Applications
Author: Dachun Yang
Publisher: Springer
Total Pages: 665
Release: 2014-01-04
Genre: Mathematics
ISBN: 3319008250

The present book offers an essential but accessible introduction to the discoveries first made in the 1990s that the doubling condition is superfluous for most results for function spaces and the boundedness of operators. It shows the methods behind these discoveries, their consequences and some of their applications. It also provides detailed and comprehensive arguments, many typical and easy-to-follow examples, and interesting unsolved problems. The theory of the Hardy space is a fundamental tool for Fourier analysis, with applications for and connections to complex analysis, partial differential equations, functional analysis and geometrical analysis. It also extends to settings where the doubling condition of the underlying measures may fail.

Classical and Multilinear Harmonic Analysis

Classical and Multilinear Harmonic Analysis
Author: Camil Muscalu
Publisher: Cambridge University Press
Total Pages: 341
Release: 2013-01-31
Genre: Mathematics
ISBN: 1107031826

This contemporary graduate-level text in harmonic analysis introduces the reader to a wide array of analytical results and techniques.