Analysis Probability Applications And Computation
Download Analysis Probability Applications And Computation full books in PDF, epub, and Kindle. Read online free Analysis Probability Applications And Computation ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : John H. Drew |
Publisher | : Springer Science & Business Media |
Total Pages | : 220 |
Release | : 2008-01-08 |
Genre | : Mathematics |
ISBN | : 0387746765 |
This title organizes computational probability methods into a systematic treatment. The book examines two categories of problems. "Algorithms for Continuous Random Variables" covers data structures and algorithms, transformations of random variables, and products of independent random variables. "Algorithms for Discrete Random Variables" discusses data structures and algorithms, sums of independent random variables, and order statistics.
Author | : Karl‐Olof Lindahl |
Publisher | : Springer |
Total Pages | : 540 |
Release | : 2019-04-29 |
Genre | : Mathematics |
ISBN | : 3030044599 |
This book is a collection of short papers from the 11th International ISAAC Congress 2017 in Växjö, Sweden. The papers, written by the best international experts, are devoted to recent results in mathematics with a focus on analysis. The volume provides to both specialists and non-specialists an excellent source of information on the current research in mathematical analysis and its various interdisciplinary applications.
Author | : Michael Mitzenmacher |
Publisher | : Cambridge University Press |
Total Pages | : 372 |
Release | : 2005-01-31 |
Genre | : Computers |
ISBN | : 9780521835404 |
Randomization and probabilistic techniques play an important role in modern computer science, with applications ranging from combinatorial optimization and machine learning to communication networks and secure protocols. This 2005 textbook is designed to accompany a one- or two-semester course for advanced undergraduates or beginning graduate students in computer science and applied mathematics. It gives an excellent introduction to the probabilistic techniques and paradigms used in the development of probabilistic algorithms and analyses. It assumes only an elementary background in discrete mathematics and gives a rigorous yet accessible treatment of the material, with numerous examples and applications. The first half of the book covers core material, including random sampling, expectations, Markov's inequality, Chevyshev's inequality, Chernoff bounds, the probabilistic method and Markov chains. The second half covers more advanced topics such as continuous probability, applications of limited independence, entropy, Markov chain Monte Carlo methods and balanced allocations. With its comprehensive selection of topics, along with many examples and exercises, this book is an indispensable teaching tool.
Author | : Vladimir V. Rykov |
Publisher | : Springer |
Total Pages | : 551 |
Release | : 2017-12-21 |
Genre | : Computers |
ISBN | : 3319715046 |
This book constitutes the refereed proceedings of the First International Conference on Analytical and Computational Methods in Probability Theory and its Applications, ACMPT 2017, held in Moscow, Russia, in October 2017. The 42 full papers presented were carefully reviewed and selected from 173 submissions. The conference program consisted of four main themes associated with significant contributions made by A.D.Soloviev. These are: Analytical methods in probability theory, Computational methods in probability theory, Asymptotical methods in probability theory, the history of mathematics.
Author | : Roman Vershynin |
Publisher | : Cambridge University Press |
Total Pages | : 299 |
Release | : 2018-09-27 |
Genre | : Business & Economics |
ISBN | : 1108415199 |
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Author | : Arnold O. Allen |
Publisher | : Gulf Professional Publishing |
Total Pages | : 776 |
Release | : 1990-08-28 |
Genre | : Computers |
ISBN | : 9780120510511 |
This is a textbook on applied probability and statistics with computer science applications for students at the upper undergraduate level. It may also be used as a self study book for the practicing computer science professional. The successful first edition of this book proved extremely useful to students who need to use probability, statistics and queueing theory to solve problems in other fields, such as engineering, physics, operations research, and management science. The book has also been successfully used for courses in queueing theory for operations research students. This second edition includes a new chapter on regression as well as more than twice as many exercises at the end of each chapter. While the emphasis is the same as in the first edition, this new book makes more extensive use of available personal computer software, such as Minitab and Mathematica.
Author | : Ernest Davis |
Publisher | : CRC Press |
Total Pages | : 431 |
Release | : 2012-05-02 |
Genre | : Mathematics |
ISBN | : 1466501596 |
Based on the author's course at NYU, Linear Algebra and Probability for Computer Science Applications gives an introduction to two mathematical fields that are fundamental in many areas of computer science. The course and the text are addressed to students with a very weak mathematical background. Most of the chapters discuss relevant MATLAB functi
Author | : James L. Johnson |
Publisher | : John Wiley & Sons |
Total Pages | : 764 |
Release | : 2011-09-09 |
Genre | : Mathematics |
ISBN | : 1118165969 |
Comprehensive and thorough development of both probability and statistics for serious computer scientists; goal-oriented: "to present the mathematical analysis underlying probability results" Special emphases on simulation and discrete decision theory Mathematically-rich, but self-contained text, at a gentle pace Review of calculus and linear algebra in an appendix Mathematical interludes (in each chapter) which examine mathematical techniques in the context of probabilistic or statistical importance Numerous section exercises, summaries, historical notes, and Further Readings for reinforcement of content
Author | : Guy Lebanon |
Publisher | : |
Total Pages | : 346 |
Release | : 2012-10-09 |
Genre | : Machine learning |
ISBN | : 9781479344765 |
Introduction to probability theory with an emphasis on the multivariate case. Includes random vectors, random processes, Markov chains, limit theorems, and related mathematics such as metric spaces, measure theory, and integration.
Author | : David F. Anderson |
Publisher | : Cambridge University Press |
Total Pages | : 447 |
Release | : 2017-11-02 |
Genre | : Mathematics |
ISBN | : 110824498X |
This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.