Analysis of Oriented Texture with application to the Detection of Architectural Distortion in Mammograms

Analysis of Oriented Texture with application to the Detection of Architectural Distortion in Mammograms
Author: Fabio Ayres
Publisher: Springer Nature
Total Pages: 150
Release: 2022-06-01
Genre: Technology & Engineering
ISBN: 3031016475

The presence of oriented features in images often conveys important information about the scene or the objects contained; the analysis of oriented patterns is an important task in the general framework of image understanding. As in many other applications of computer vision, the general framework for the understanding of oriented features in images can be divided into low- and high-level analysis. In the context of the study of oriented features, low-level analysis includes the detection of oriented features in images; a measure of the local magnitude and orientation of oriented features over the entire region of analysis in the image is called the orientation field. High-level analysis relates to the discovery of patterns in the orientation field, usually by associating the structure perceived in the orientation field with a geometrical model. This book presents an analysis of several important methods for the detection of oriented features in images, and a discussion of the phase portrait method for high-level analysis of orientation fields. In order to illustrate the concepts developed throughout the book, an application is presented of the phase portrait method to computer-aided detection of architectural distortion in mammograms. Table of Contents: Detection of Oriented Features in Images / Analysis of Oriented Patterns Using Phase Portraits / Optimization Techniques / Detection of Sites of Architectural Distortion in Mammograms

Analysis of Oriented Texture with application to the Detection of Architectural Distortion in Mammograms

Analysis of Oriented Texture with application to the Detection of Architectural Distortion in Mammograms
Author: Fabio Ayres
Publisher: Springer
Total Pages: 150
Release: 2010-12-09
Genre: Technology & Engineering
ISBN: 9783031005190

The presence of oriented features in images often conveys important information about the scene or the objects contained; the analysis of oriented patterns is an important task in the general framework of image understanding. As in many other applications of computer vision, the general framework for the understanding of oriented features in images can be divided into low- and high-level analysis. In the context of the study of oriented features, low-level analysis includes the detection of oriented features in images; a measure of the local magnitude and orientation of oriented features over the entire region of analysis in the image is called the orientation field. High-level analysis relates to the discovery of patterns in the orientation field, usually by associating the structure perceived in the orientation field with a geometrical model. This book presents an analysis of several important methods for the detection of oriented features in images, and a discussion of the phase portrait method for high-level analysis of orientation fields. In order to illustrate the concepts developed throughout the book, an application is presented of the phase portrait method to computer-aided detection of architectural distortion in mammograms. Table of Contents: Detection of Oriented Features in Images / Analysis of Oriented Patterns Using Phase Portraits / Optimization Techniques / Detection of Sites of Architectural Distortion in Mammograms

Analysis of Oriented Texture

Analysis of Oriented Texture
Author: Fabio Ayres
Publisher: Morgan & Claypool
Total Pages: 150
Release: 2011
Genre: Technology & Engineering
ISBN: 9781608450299

The presence of oriented features in images often conveys important information about the scene or the objects contained; the analysis of oriented patterns is an important task in the general framework of image understanding. As in many other applications of computer vision, the general framework for the understanding of oriented features in images can be divided into low- and high-level analysis. In the context of the study of oriented features, low-level analysis includes the detection of oriented features in images; a measure of the local magnitude and orientation of oriented features over the entire region of analysis in the image is called the orientation field. High-level analysis relates to the discovery of patterns in the orientation field, usually by associating the structure perceived in the orientation field with a geometrical model. This book presents an analysis of several important methods for the detection of oriented features in images, and a discussion of the phase portrait method for high-level analysis of orientation fields. In order to illustrate the concepts developed throughout the book, an application is presented of the phase portrait method to computer-aided detection of architectural distortion in mammograms. Table of Contents: Detection of Oriented Features in Images / Analysis of Oriented Patterns Using Phase Portraits / Optimization Techniques / Detection of Sites of Architectural Distortion in Mammograms

Analysis of Oriented Texture

Analysis of Oriented Texture
Author: Fabio Ayres
Publisher: Morgan & Claypool Publishers
Total Pages: 164
Release: 2011-02-02
Genre: Technology & Engineering
ISBN: 1608450309

The presence of oriented features in images often conveys important information about the scene or the objects contained; the analysis of oriented patterns is an important task in the general framework of image understanding. As in many other applications of computer vision, the general framework for the understanding of oriented features in images can be divided into low- and high-level analysis. In the context of the study of oriented features, low-level analysis includes the detection of oriented features in images; a measure of the local magnitude and orientation of oriented features over the entire region of analysis in the image is called the orientation field. High-level analysis relates to the discovery of patterns in the orientation field, usually by associating the structure perceived in the orientation field with a geometrical model. This book presents an analysis of several important methods for the detection of oriented features in images, and a discussion of the phase portrait method for high-level analysis of orientation fields. In order to illustrate the concepts developed throughout the book, an application is presented of the phase portrait method to computer-aided detection of architectural distortion in mammograms. Table of Contents: Detection of Oriented Features in Images / Analysis of Oriented Patterns Using Phase Portraits / Optimization Techniques / Detection of Sites of Architectural Distortion in Mammograms

Computerized Analysis of Mammographic Images for Detection and Characterization of Breast Cancer

Computerized Analysis of Mammographic Images for Detection and Characterization of Breast Cancer
Author: Arianna Mencattini
Publisher: Springer Nature
Total Pages: 166
Release: 2022-05-31
Genre: Technology & Engineering
ISBN: 3031016645

The identification and interpretation of the signs of breast cancer in mammographic images from screening programs can be very difficult due to the subtle and diversified appearance of breast disease. This book presents new image processing and pattern recognition techniques for computer-aided detection and diagnosis of breast cancer in its various forms. The main goals are: (1) the identification of bilateral asymmetry as an early sign of breast disease which is not detectable by other existing approaches; and (2) the detection and classification of masses and regions of architectural distortion, as benign lesions or malignant tumors, in a unified framework that does not require accurate extraction of the contours of the lesions. The innovative aspects of the work include the design and validation of landmarking algorithms, automatic Tabár masking procedures, and various feature descriptors for quantification of similarity and for contour independent classification of mammographic lesions. Characterization of breast tissue patterns is achieved by means of multidirectional Gabor filters. For the classification tasks, pattern recognition strategies, including Fisher linear discriminant analysis, Bayesian classifiers, support vector machines, and neural networks are applied using automatic selection of features and cross-validation techniques. Computer-aided detection of bilateral asymmetry resulted in accuracy up to 0.94, with sensitivity and specificity of 1 and 0.88, respectively. Computer-aided diagnosis of automatically detected lesions provided sensitivity of detection of malignant tumors in the range of [0.70, 0.81] at a range of falsely detected tumors of [0.82, 3.47] per image. The techniques presented in this work are effective in detecting and characterizing various mammographic signs of breast disease.

Computer-Aided Detection of Architectural Distortion in Prior Mammograms of Interval Cancer

Computer-Aided Detection of Architectural Distortion in Prior Mammograms of Interval Cancer
Author: Shantanu Banik
Publisher: Springer Nature
Total Pages: 176
Release: 2022-05-31
Genre: Technology & Engineering
ISBN: 3031016564

Architectural distortion is an important and early sign of breast cancer, but because of its subtlety, it is a common cause of false-negative findings on screening mammograms. Screening mammograms obtained prior to the detection of cancer could contain subtle signs of early stages of breast cancer, in particular, architectural distortion. This book presents image processing and pattern recognition techniques to detect architectural distortion in prior mammograms of interval-cancer cases. The methods are based upon Gabor filters, phase portrait analysis, procedures for the analysis of the angular spread of power, fractal analysis, Laws' texture energy measures derived from geometrically transformed regions of interest (ROIs), and Haralick's texture features. With Gabor filters and phase-portrait analysis, 4,224 ROIs were automatically obtained from 106 prior mammograms of 56 interval-cancer cases, including 301 true-positive ROIs related to architectural distortion, and from 52 mammograms of 13 normal cases. For each ROI, the fractal dimension, the entropy of the angular spread of power, 10 Laws' texture energy measures, and Haralick's 14 texture features were computed. The areas under the receiver operating characteristic (ROC) curves obtained using the features selected by stepwise logistic regression and the leave-one-image-out method are 0.77 with the Bayesian classifier, 0.76 with Fisher linear discriminant analysis, and 0.79 with a neural network classifier. Free-response ROC analysis indicated sensitivities of 0.80 and 0.90 at 5.7 and 8.8 false positives (FPs) per image, respectively, with the Bayesian classifier and the leave-one-image-out method. The present study has demonstrated the ability to detect early signs of breast cancer 15 months ahead of the time of clinical diagnosis, on the average, for interval-cancer cases, with a sensitivity of 0.8 at 5.7 FP/image. The presented computer-aided detection techniques, dedicated to accurate detection and localization of architectural distortion, could lead to efficient detection of early and subtle signs of breast cancer at pre-mass-formation stages. Table of Contents: Introduction / Detection of Early Signs of Breast Cancer / Detection and Analysis of Oriented Patterns / Detection of Potential Sites of Architectural Distortion / Experimental Set Up and Datasets / Feature Selection and Pattern Classification / Analysis of Oriented Patterns Related to Architectural Distortion / Detection of Architectural Distortion in Prior Mammograms / Concluding Remarks

Modeling and Analysis of Shape with Applications in Computer-aided Diagnosis of Breast Cancer

Modeling and Analysis of Shape with Applications in Computer-aided Diagnosis of Breast Cancer
Author: Denise Guliato
Publisher: Springer Nature
Total Pages: 75
Release: 2022-05-31
Genre: Technology & Engineering
ISBN: 303179429X

Malignant tumors due to breast cancer and masses due to benign disease appear in mammograms with different shape characteristics: the former usually have rough, spiculated, or microlobulated contours, whereas the latter commonly have smooth, round, oval, or macrolobulated contours. Features that characterize shape roughness and complexity can assist in distinguishing between malignant tumors and benign masses. In spite of the established importance of shape factors in the analysis of breast tumors and masses, difficulties exist in obtaining accurate and artifact-free boundaries of the related regions from mammograms. Whereas manually drawn contours could contain artifacts related to hand tremor and are subject to intra-observer and inter-observer variations, automatically detected contours could contain noise and inaccuracies due to limitations or errors in the procedures for the detection and segmentation of the related regions. Modeling procedures are desired to eliminate the artifacts in a given contour, while preserving the important and significant details present in the contour. This book presents polygonal modeling methods that reduce the influence of noise and artifacts while preserving the diagnostically relevant features, in particular the spicules and lobulations in the given contours. In order to facilitate the derivation of features that capture the characteristics of shape roughness of contours of breast masses, methods to derive a signature based on the turning angle function obtained from the polygonal model are described. Methods are also described to derive an index of spiculation, an index characterizing the presence of convex regions, an index characterizing the presence of concave regions, an index of convexity, and a measure of fractal dimension from the turning angle function. Results of testing the methods with a set of 111 contours of 65 benign masses and 46 malignant tumors are presented and discussed. It is shown that shape modeling and analysis can lead to classification accuracy in discriminating between benign masses and malignant tumors, in terms of the area under the receiver operating characteristic curve, of up to 0.94. The methods have applications in modeling and analysis of the shape of various types of regions or objects in images, computer vision, computer graphics, and analysis of biomedical images, with particular significance in computer-aided diagnosis of breast cancer. Table of Contents: Analysis of Shape / Polygonal Modeling of Contours / Shape Factors for Pattern Classification / Classification of Breast Masses

Digital Image Processing for Ophthalmology

Digital Image Processing for Ophthalmology
Author: Faraz Oloumi
Publisher: Springer Nature
Total Pages: 151
Release: 2022-06-01
Genre: Technology & Engineering
ISBN: 3031016602

The monitoring of the effects of retinopathy on the visual system can be assisted by analyzing the vascular architecture of the retina. This book presents methods based on Gabor filters to detect blood vessels in fundus images of the retina. Forty images of the retina from the Digital Retinal Images for Vessel Extraction (DRIVE) database were used to evaluate the performance of the methods. The results demonstrate high efficiency in the detection of blood vessels with an area under the receiver operating characteristic curve of 0.96. Monitoring the openness of the major temporal arcade (MTA) could facilitate improved diagnosis and optimized treatment of retinopathy. This book presents methods for the detection and modeling of the MTA, including the generalized Hough transform to detect parabolic forms. Results obtained with 40 images of the DRIVE database, compared with hand-drawn traces of the MTA, indicate a mean distance to the closest point of about 0.24mm. This book illustrates applications of the methods mentioned above for the analysis of the effects of proliferative diabetic retinopathy and retinopathy of prematurity on retinal vascular architecture.

Spatiotemporal Modeling of Influenza

Spatiotemporal Modeling of Influenza
Author: William E. Schiesser
Publisher: Morgan & Claypool Publishers
Total Pages: 113
Release: 2019-05-06
Genre: Technology & Engineering
ISBN: 1681735709

This book has a two-fold purpose: An introduction to the computer-based modeling of influenza, a continuing major worldwide communicable disease. The use of (1) as an illustration of a methodology for the computer-based modeling of communicable diseases. For the purposes of (1) and (2), a basic influenza model is formulated as a system of partial differential equations (PDEs) that define the spatiotemporal evolution of four populations: susceptibles, untreated and treated infecteds, and recovereds. The requirements of a well-posed PDE model are considered, including the initial and boundary conditions. The terms of the PDEs are explained. The computer implementation of the model is illustrated with a detailed line-by-line explanation of a system of routines in R (a quality, open-source scientific computing system that is readily available from the Internet). The R routines demonstrate the straightforward numerical solution of a system of nonlinear PDEs by the method of lines (MOL), an established general algorithm for PDEs. The presentation of the PDE modeling methodology is introductory with a minumum of formal mathematics (no theorems and proofs), and with emphasis on example applications. The intent of the book is to assist in the initial understanding and use of PDE mathematical modeling of communicable diseases, and the explanation and interpretation of the computed model solutions, as illustrated with the influenza model.