Analysis of Observational Health Care Data Using SAS

Analysis of Observational Health Care Data Using SAS
Author: Douglas E. Faries
Publisher: SAS Press
Total Pages: 0
Release: 2010
Genre: Medical care
ISBN: 9781607642275

This book guides researchers in performing and presenting high-quality analyses of all kinds of non-randomized studies, including analyses of observational studies, claims database analyses, assessment of registry data, survey data, pharmaco-economic data, and many more applications. The text is sufficiently detailed to provide not only general guidance, but to help the researcher through all of the standard issues that arise in such analyses. Just enough theory is included to allow the reader to understand the pros and cons of alternative approaches and when to use each method. The numerous contributors to this book illustrate, via real-world numerical examples and SAS code, appropriate implementations of alternative methods. The end result is that researchers will learn how to present high-quality and transparent analyses that will lead to fair and objective decisions from observational data. This book is part of the SAS Press program.

Using SAS for Data Management, Statistical Analysis, and Graphics

Using SAS for Data Management, Statistical Analysis, and Graphics
Author: Ken Kleinman
Publisher: CRC Press
Total Pages: 308
Release: 2010-07-28
Genre: Mathematics
ISBN: 1439827583

Quick and Easy Access to Key Elements of Documentation Includes worked examples across a wide variety of applications, tasks, and graphicsA unique companion for statistical coders, Using SAS for Data Management, Statistical Analysis, and Graphics presents an easy way to learn how to perform an analytical task in SAS, without having to navigate thro

Real World Health Care Data Analysis

Real World Health Care Data Analysis
Author: Douglas Faries
Publisher:
Total Pages: 0
Release: 2020
Genre: Health & Fitness
ISBN: 9781642958010

Real world health care data from observational studies, pragmatic trials, patient registries, and databases is common and growing in use. Real World Health Care Data Analysis: Causal Methods and Implementation in SAS® brings together best practices for causal-based comparative effectiveness analyses based on real world data in a single location. Example SAS code is provided to make the analyses relatively easy and efficient.The book also presents several emerging topics of interest, including algorithms for personalized medicine, methods that address the complexities of time varying confounding, extensions of propensity scoring to comparisons between more than two interventions, sensitivity analyses for unmeasured confounding, and implementation of model averaging.

SAS for Epidemiologists

SAS for Epidemiologists
Author: Charles DiMaggio
Publisher: Springer Science & Business Media
Total Pages: 266
Release: 2012-10-25
Genre: Mathematics
ISBN: 1461448549

This comprehensive text covers the use of SAS for epidemiology and public health research. Developed with students in mind and from their feedback, the text addresses this material in a straightforward manner with a multitude of examples. It is directly applicable to students and researchers in the fields of public health, biostatistics and epidemiology. Through a “hands on” approach to the use of SAS for a broad number of epidemiologic analyses, readers learn techniques for data entry and cleaning, categorical analysis, ANOVA, and linear regression and much more. Exercises utilizing real-world data sets are featured throughout the book. SAS screen shots demonstrate the steps for successful programming. SAS (Statistical Analysis System) is an integrated system of software products provided by the SAS institute, which is headquartered in California. It provides programmers and statisticians the ability to engage in many sophisticated statistical analyses and data retrieval and mining exercises. SAS is widely used in the fields of epidemiology and public health research, predominately due to its ability to reliably analyze very large administrative data sets, as well as more commonly encountered clinical trial and observational research data.

Developing a Protocol for Observational Comparative Effectiveness Research: A User's Guide

Developing a Protocol for Observational Comparative Effectiveness Research: A User's Guide
Author: Agency for Health Care Research and Quality (U.S.)
Publisher: Government Printing Office
Total Pages: 236
Release: 2013-02-21
Genre: Medical
ISBN: 1587634236

This User’s Guide is a resource for investigators and stakeholders who develop and review observational comparative effectiveness research protocols. It explains how to (1) identify key considerations and best practices for research design; (2) build a protocol based on these standards and best practices; and (3) judge the adequacy and completeness of a protocol. Eleven chapters cover all aspects of research design, including: developing study objectives, defining and refining study questions, addressing the heterogeneity of treatment effect, characterizing exposure, selecting a comparator, defining and measuring outcomes, and identifying optimal data sources. Checklists of guidance and key considerations for protocols are provided at the end of each chapter. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews. More more information, please consult the Agency website: www.effectivehealthcare.ahrq.gov)

Multiple Imputation of Missing Data Using SAS

Multiple Imputation of Missing Data Using SAS
Author: Patricia Berglund
Publisher: SAS Institute
Total Pages: 328
Release: 2014-07-01
Genre: Computers
ISBN: 162959203X

Find guidance on using SAS for multiple imputation and solving common missing data issues. Multiple Imputation of Missing Data Using SAS provides both theoretical background and constructive solutions for those working with incomplete data sets in an engaging example-driven format. It offers practical instruction on the use of SAS for multiple imputation and provides numerous examples that use a variety of public release data sets with applications to survey data. Written for users with an intermediate background in SAS programming and statistics, this book is an excellent resource for anyone seeking guidance on multiple imputation. The authors cover the MI and MIANALYZE procedures in detail, along with other procedures used for analysis of complete data sets. They guide analysts through the multiple imputation process, including evaluation of missing data patterns, choice of an imputation method, execution of the process, and interpretation of results. Topics discussed include how to deal with missing data problems in a statistically appropriate manner, how to intelligently select an imputation method, how to incorporate the uncertainty introduced by the imputation process, and how to incorporate the complex sample design (if appropriate) through use of the SAS SURVEY procedures. Discover the theoretical background and see extensive applications of the multiple imputation process in action. This book is part of the SAS Press program.

Analysis of Observational Health Care Data Using SAS

Analysis of Observational Health Care Data Using SAS
Author: Douglas Faries
Publisher:
Total Pages: 452
Release: 2014
Genre:
ISBN:

This book guides researchers in performing and presenting high-quality analyses of all kinds of non-randomized studies, including analyses of observational studies, claims database analyses, assessment of registry data, survey data, pharmaco-economic data, and many more applications. The text is sufficiently detailed to provide not only general guidance, but to help the researcher through all of the standard issues that arise in such analyses. Just enough theory is included to allow the reader to understand the pros and cons of alternative approaches and when to use each method. The numerous contributors to this book illustrate, via real-world numerical examples and SAS code, appropriate implementations of alternative methods. The end result is that researchers will learn how to present high-quality and transparent analyses that will lead to fair and objective decisions from observational data. This book is part of the SAS Press program.

Applied Medical Statistics Using SAS

Applied Medical Statistics Using SAS
Author: Geoff Der
Publisher: CRC Press
Total Pages: 539
Release: 2012-10-01
Genre: Mathematics
ISBN: 1439867984

Written with medical statisticians and medical researchers in mind, this intermediate-level reference explores the use of SAS for analyzing medical data. Applied Medical Statistics Using SAS covers the whole range of modern statistical methods used in the analysis of medical data, including regression, analysis of variance and covariance, longitudi

Real World Health Care Data Analysis

Real World Health Care Data Analysis
Author: Douglas Faries
Publisher: SAS Institute
Total Pages: 500
Release: 2020-01-15
Genre: Computers
ISBN: 164295800X

Discover best practices for real world data research with SAS code and examples Real world health care data is common and growing in use with sources such as observational studies, patient registries, electronic medical record databases, insurance healthcare claims databases, as well as data from pragmatic trials. This data serves as the basis for the growing use of real world evidence in medical decision-making. However, the data itself is not evidence. Analytical methods must be used to turn real world data into valid and meaningful evidence. Real World Health Care Data Analysis: Causal Methods and Implementation Using SAS brings together best practices for causal comparative effectiveness analyses based on real world data in a single location and provides SAS code and examples to make the analyses relatively easy and efficient. The book focuses on analytic methods adjusted for time-independent confounding, which are useful when comparing the effect of different potential interventions on some outcome of interest when there is no randomization. These methods include: propensity score matching, stratification methods, weighting methods, regression methods, and approaches that combine and average across these methods methods for comparing two interventions as well as comparisons between three or more interventions algorithms for personalized medicine sensitivity analyses for unmeasured confounding

SAS and R

SAS and R
Author: Ken Kleinman
Publisher: CRC Press
Total Pages: 325
Release: 2009-07-21
Genre: Mathematics
ISBN: 1420070592

An All-in-One Resource for Using SAS and R to Carry out Common TasksProvides a path between languages that is easier than reading complete documentationSAS and R: Data Management, Statistical Analysis, and Graphics presents an easy way to learn how to perform an analytical task in both SAS and R, without having to navigate through the extensive, id