Analysis Guides
Download Analysis Guides full books in PDF, epub, and Kindle. Read online free Analysis Guides ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Michael John De Smith |
Publisher | : Troubador Publishing Ltd |
Total Pages | : 417 |
Release | : 2007 |
Genre | : Mathematics |
ISBN | : 1905886608 |
Addresses a range of analytical techniques that are provided within modern Geographic Information Systems and related geospatial software products. This guide covers: the principal concepts of geospatial analysis; core components of geospatial analysis; and, surface analysis, including surface form analysis, gridding and interpolation methods.
Author | : Douglas Luke |
Publisher | : Springer |
Total Pages | : 241 |
Release | : 2015-12-14 |
Genre | : Mathematics |
ISBN | : 3319238833 |
Presenting a comprehensive resource for the mastery of network analysis in R, the goal of Network Analysis with R is to introduce modern network analysis techniques in R to social, physical, and health scientists. The mathematical foundations of network analysis are emphasized in an accessible way and readers are guided through the basic steps of network studies: network conceptualization, data collection and management, network description, visualization, and building and testing statistical models of networks. As with all of the books in the Use R! series, each chapter contains extensive R code and detailed visualizations of datasets. Appendices will describe the R network packages and the datasets used in the book. An R package developed specifically for the book, available to readers on GitHub, contains relevant code and real-world network datasets as well.
Author | : David J. Livingstone |
Publisher | : John Wiley & Sons |
Total Pages | : 358 |
Release | : 2009-12-10 |
Genre | : Science |
ISBN | : 047068481X |
Inspired by the author's need for practical guidance in the processes of data analysis, A Practical Guide to Scientific Data Analysis has been written as a statistical companion for the working scientist. This handbook of data analysis with worked examples focuses on the application of mathematical and statistical techniques and the interpretation of their results. Covering the most common statistical methods for examining and exploring relationships in data, the text includes extensive examples from a variety of scientific disciplines. The chapters are organised logically, from planning an experiment, through examining and displaying the data, to constructing quantitative models. Each chapter is intended to stand alone so that casual users can refer to the section that is most appropriate to their problem. Written by a highly qualified and internationally respected author this text: Presents statistics for the non-statistician Explains a variety of methods to extract information from data Describes the application of statistical methods to the design of “performance chemicals” Emphasises the application of statistical techniques and the interpretation of their results Of practical use to chemists, biochemists, pharmacists, biologists and researchers from many other scientific disciplines in both industry and academia.
Author | : Andy Mitchell |
Publisher | : ESRI, Inc. |
Total Pages | : 190 |
Release | : 1999 |
Genre | : Computers |
ISBN | : 9781879102064 |
Backed by the collective knowledge and expertise of the worlds leading Geographic Information Systems company, this volume presents the concepts and methods unleashing the full analytic power of GIS.
Author | : Charles S. Reichardt |
Publisher | : Guilford Publications |
Total Pages | : 382 |
Release | : 2019-09-02 |
Genre | : Business & Economics |
ISBN | : 1462540201 |
Featuring engaging examples from diverse disciplines, this book explains how to use modern approaches to quasi-experimentation to derive credible estimates of treatment effects under the demanding constraints of field settings. Foremost expert Charles S. Reichardt provides an in-depth examination of the design and statistical analysis of pretest-posttest, nonequivalent groups, regression discontinuity, and interrupted time-series designs. He details their relative strengths and weaknesses and offers practical advice about their use. Reichardt compares quasi-experiments to randomized experiments and discusses when and why the former might be a better choice. Modern moethods for elaborating a research design to remove bias from estimates of treatment effects are described, as are tactics for dealing with missing data and noncompliance with treatment assignment. Throughout, mathematical equations are translated into words to enhance accessibility.
Author | : Jane E. Miller |
Publisher | : University of Chicago Press |
Total Pages | : 576 |
Release | : 2013-09-26 |
Genre | : Mathematics |
ISBN | : 022603819X |
Many different people, from social scientists to government agencies to business professionals, depend on the results of multivariate models to inform their decisions. Researchers use these advanced statistical techniques to analyze relationships among multiple variables, such as how exercise and weight relate to the risk of heart disease, or how unemployment and interest rates affect economic growth. Yet, despite the widespread need to plainly and effectively explain the results of multivariate analyses to varied audiences, few are properly taught this critical skill. The Chicago Guide to Writing about Multivariate Analysis is the book researchers turn to when looking for guidance on how to clearly present statistical results and break through the jargon that often clouds writing about applications of statistical analysis. This new edition features even more topics and real-world examples, making it the must-have resource for anyone who needs to communicate complex research results. For this second edition, Jane E. Miller includes four new chapters that cover writing about interactions, writing about event history analysis, writing about multilevel models, and the “Goldilocks principle” for choosing the right size contrast for interpreting results for different variables. In addition, she has updated or added numerous examples, while retaining her clear voice and focus on writers thinking critically about their intended audience and objective. Online podcasts, templates, and an updated study guide will help readers apply skills from the book to their own projects and courses. This continues to be the only book that brings together all of the steps involved in communicating findings based on multivariate analysis—finding data, creating variables, estimating statistical models, calculating overall effects, organizing ideas, designing tables and charts, and writing prose—in a single volume. When aligned with Miller’s twelve fundamental principles for quantitative writing, this approach will empower readers—whether students or experienced researchers—to communicate their findings clearly and effectively.
Author | : Robert L. Johnson |
Publisher | : Guilford Publications |
Total Pages | : 289 |
Release | : 2016-07-05 |
Genre | : Social Science |
ISBN | : 1462526985 |
Synthesizing the literature from the survey and measurement fields, this book explains how to develop closed-response survey scales that will accurately capture such constructs as attitudes, beliefs, or behaviors. It provides guidelines to help applied researchers or graduate students review existing scales for possible adoption or adaptation in a study; create their own conceptual framework for a scale; write checklists, true-false variations, and Likert-style items; design response scales; examine validity and reliability; conduct a factor analysis; and document the instrument development and its technical quality. Advice is given on constructing tables and graphs to report survey scale results. Concepts and procedures are illustrated with "Not This/But This" examples from multiple disciplines. User-Friendly Features *End-of-chapter exercises with sample solutions, plus annotated suggestions for further reading. *"Not This/But This" examples of poorly written and strong survey items. *Chapter-opening overviews and within-chapter summaries. *Glossary of key concepts. *Appendix with examples of parametric and nonparametric procedures for group comparisons.
Author | : David A. Kenny |
Publisher | : John Wiley & Sons |
Total Pages | : 304 |
Release | : 1979 |
Genre | : Mathematics |
ISBN | : |
Structural modeling; Covariance algebra; Principles of path analysis; Models with observed variables as causes; Measurement error in the exogenous variable and third variables; Observed variables as causes of each other; Single unmeasured exogenous variables; Causal models with multiple unmeasured variables; Causal models with unmeasured variables; Causal models and true experiments; The nonequivalent control group design; Cross-lagged panel correlation; Loose ends.
Author | : Anthony J. Onwuegbuzie |
Publisher | : Routledge |
Total Pages | : 407 |
Release | : 2021-07-12 |
Genre | : Psychology |
ISBN | : 1351395521 |
The Routledge Reviewer’s Guide to Mixed Methods Analysis is a groundbreaking edited book – the first devoted solely to mixed methods research analyses, or mixed analyses. Each of the 30 seminal chapters, authored by internationally renowned scholars, provides a simple and practical introduction to a method of mixed analysis. Each chapter demonstrates "how to conduct the analysis" in easy-to-understand language. Many of the chapters present new topics that have never been written before, and all chapters offer cutting-edge approaches to analysis. The book contains the following four sections: Part I Quantitative Approaches to Qualitative Data (e.g., factor analysis of text, multidimensional scaling of qualitative data); Part II Qualitative Approaches to Quantitative Data (e.g., qualitizing data, mixed methodological discourse analysis); Part III "Inherently" Mixed Analysis Approaches (e.g., qualitative comparative analysis, mixed methods social network analysis, social media analytics as mixed analysis, GIS as mixed analysis); and Part IV Use of Software for Mixed Data Analysis (e.g., QDA Miner, WordStat, MAXQDA, NVivo, SPSS). The audience for this book includes (a) researchers, evaluators, and practitioners who conduct a variety of research projects and who are interested in using innovative analyses that will allow them to extract more from their data; (b) academics, including faculty who would use this book in their scholarship, as well as in their graduate-level courses, and graduate students who need access to a comprehensive set of mixed analysis tools for their dissertations/theses and other research assignments and projects; and (c) computer-assisted data analysis software developers who are seeking additional mixed analyses to include within their software programs. Chapter 24 of this book is freely available as a downloadable Open Access PDF at http://www.taylorfrancis.com under a Creative Commons Attribution-Non Commercial-No Derivatives (CC-BY-NC-ND) 4.0 license.
Author | : Mathias Harrer |
Publisher | : CRC Press |
Total Pages | : 500 |
Release | : 2021-09-15 |
Genre | : Mathematics |
ISBN | : 1000435636 |
Doing Meta-Analysis with R: A Hands-On Guide serves as an accessible introduction on how meta-analyses can be conducted in R. Essential steps for meta-analysis are covered, including calculation and pooling of outcome measures, forest plots, heterogeneity diagnostics, subgroup analyses, meta-regression, methods to control for publication bias, risk of bias assessments and plotting tools. Advanced but highly relevant topics such as network meta-analysis, multi-three-level meta-analyses, Bayesian meta-analysis approaches and SEM meta-analysis are also covered. A companion R package, dmetar, is introduced at the beginning of the guide. It contains data sets and several helper functions for the meta and metafor package used in the guide. The programming and statistical background covered in the book are kept at a non-expert level, making the book widely accessible. Features • Contains two introductory chapters on how to set up an R environment and do basic imports/manipulations of meta-analysis data, including exercises • Describes statistical concepts clearly and concisely before applying them in R • Includes step-by-step guidance through the coding required to perform meta-analyses, and a companion R package for the book