Analysis And Continuum Mechanics
Download Analysis And Continuum Mechanics full books in PDF, epub, and Kindle. Read online free Analysis And Continuum Mechanics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Wilhelm Flügge |
Publisher | : Springer Science & Business Media |
Total Pages | : 215 |
Release | : 2013-11-11 |
Genre | : Science |
ISBN | : 3642883826 |
Through several centuries there has been a lively interaction between mathematics and mechanics. On the one side, mechanics has used mathemat ics to formulate the basic laws and to apply them to a host of problems that call for the quantitative prediction of the consequences of some action. On the other side, the needs of mechanics have stimulated the development of mathematical concepts. Differential calculus grew out of the needs of Newtonian dynamics; vector algebra was developed as a means . to describe force systems; vector analysis, to study velocity fields and force fields; and the calcul~s of variations has evolved from the energy principles of mechan ics. In recent times the theory of tensors has attracted the attention of the mechanics people. Its very name indicates its origin in the theory of elasticity. For a long time little use has been made of it in this area, but in the last decade its usefulness in the mechanics of continuous media has been widely recognized. While the undergraduate textbook literature in this country was becoming "vectorized" (lagging almost half a century behind the development in Europe), books dealing with various aspects of continuum mechanics took to tensors like fish to water. Since many authors were not sure whether their readers were sufficiently familiar with tensors~ they either added' a chapter on tensors or wrote a separate book on the subject.
Author | : Sumio Murakami |
Publisher | : Springer Science & Business Media |
Total Pages | : 420 |
Release | : 2012-02-24 |
Genre | : Technology & Engineering |
ISBN | : 9400726651 |
Recent developments in engineering and technology have brought about serious and enlarged demands for reliability, safety and economy in wide range of fields such as aeronautics, nuclear engineering, civil and structural engineering, automotive and production industry. This, in turn, has caused more interest in continuum damage mechanics and its engineering applications. This book aims to give a concise overview of the current state of damage mechanics, and then to show the fascinating possibility of this promising branch of mechanics, and to provide researchers, engineers and graduate students with an intelligible and self-contained textbook. The book consists of two parts and an appendix. Part I is concerned with the foundation of continuum damage mechanics. Basic concepts of material damage and the mechanical representation of damage state of various kinds are described in Chapters 1 and 2. In Chapters 3-5, irreversible thermodynamics, thermodynamic constitutive theory and its application to the modeling of the constitutive and the evolution equations of damaged materials are descried as a systematic basis for the subsequent development throughout the book. Part II describes the application of the fundamental theories developed in Part I to typical damage and fracture problems encountered in various fields of the current engineering. Important engineering aspects of elastic-plastic or ductile damage, their damage mechanics modeling and their further refinement are first discussed in Chapter 6. Chapters 7 and 8 are concerned with the modeling of fatigue, creep, creep-fatigue and their engineering application. Damage mechanics modeling of complicated crack closure behavior in elastic-brittle and composite materials are discussed in Chapters 9 and 10. In Chapter 11, applicability of the local approach to fracture by means of damage mechanics and finite element method, and the ensuing mathematical and numerical problems are briefly discussed. A proper understanding of the subject matter requires knowledge of tensor algebra and tensor calculus. At the end of this book, therefore, the foundations of tensor analysis are presented in the Appendix, especially for readers with insufficient mathematical background, but with keen interest in this exciting field of mechanics.
Author | : Javier Bonet |
Publisher | : Cambridge University Press |
Total Pages | : 272 |
Release | : 1997-09-28 |
Genre | : Mathematics |
ISBN | : 9780521572729 |
A unified treatment of nonlinear continuum analysis and finite element techniques.
Author | : Fridtjov Irgens |
Publisher | : Springer Science & Business Media |
Total Pages | : 667 |
Release | : 2008-01-10 |
Genre | : Science |
ISBN | : 3540742980 |
This book presents an introduction into the entire science of Continuum Mechanics in three parts. The presentation is modern and comprehensive. Its introduction into tensors is very gentle. The book contains many examples and exercises, and is intended for scientists, practitioners and students of mechanics.
Author | : G. Thomas Mase |
Publisher | : CRC Press |
Total Pages | : 400 |
Release | : 2009-07-28 |
Genre | : Science |
ISBN | : 1420085395 |
Continuum Mechanics for Engineers, Third Edition provides engineering students with a complete, concise, and accessible introduction to advanced engineering mechanics. The impetus for this latest edition was the need to suitably combine the introduction of continuum mechanics, linear and nonlinear elasticity, and viscoelasticity for a graduate-leve
Author | : Peter Haupt |
Publisher | : Springer Science & Business Media |
Total Pages | : 666 |
Release | : 2013-03-14 |
Genre | : Technology & Engineering |
ISBN | : 3662047756 |
The new edition includes additional analytical methods in the classical theory of viscoelasticity. This leads to a new theory of finite linear viscoelasticity of incompressible isotropic materials. Anisotropic viscoplasticity is completely reformulated and extended to a general constitutive theory that covers crystal plasticity as a special case.
Author | : Javier Bonet |
Publisher | : Cambridge University Press |
Total Pages | : 137 |
Release | : 2012-08-02 |
Genre | : Science |
ISBN | : 1139561308 |
Many processes in materials science and engineering, such as the load deformation behaviour of certain structures, exhibit nonlinear characteristics. The computer simulation of such processes therefore requires a deep understanding of both the theoretical aspects of nonlinearity and the associated computational techniques. This book provides a complete set of exercises and solutions in the field of theoretical and computational nonlinear continuum mechanics and is the perfect companion to Nonlinear Continuum Mechanics for Finite Element Analysis, where the authors set out the theoretical foundations of the subject. It employs notation consistent with the theory book and serves as a great resource to students, researchers and those in industry interested in gaining confidence by practising through examples. Instructors of the subject will also find the book indispensable in aiding student learning.
Author | : Kolumban Hutter |
Publisher | : Springer Science & Business Media |
Total Pages | : 645 |
Release | : 2013-11-11 |
Genre | : Science |
ISBN | : 3662064022 |
The book unifies classical continuum mechanics and turbulence modeling, i.e. the same fundamental concepts are used to derive model equations for material behaviour and turbulence closure and complements these with methods of dimensional analysis. The intention is to equip the reader with the ability to understand the complex nonlinear modeling in material behaviour and turbulence closure as well as to derive or invent his own models. Examples are mostly taken from environmental physics and geophysics.
Author | : Mikhail Itskov |
Publisher | : Springer Science & Business Media |
Total Pages | : 253 |
Release | : 2009-04-30 |
Genre | : Technology & Engineering |
ISBN | : 3540939075 |
There is a large gap between engineering courses in tensor algebra on one hand, and the treatment of linear transformations within classical linear algebra on the other. This book addresses primarily engineering students with some initial knowledge of matrix algebra. Thereby, mathematical formalism is applied as far as it is absolutely necessary. Numerous exercises provided in the book are accompanied by solutions enabling autonomous study. The last chapters deal with modern developments in the theory of isotropic and anisotropic tensor functions and their applications to continuum mechanics and might therefore be of high interest for PhD-students and scientists working in this area.
Author | : Gerard A Maugin |
Publisher | : Springer Science & Business Media |
Total Pages | : 321 |
Release | : 2013-04-08 |
Genre | : Science |
ISBN | : 9400763530 |
This overview of the development of continuum mechanics throughout the twentieth century is unique and ambitious. Utilizing a historical perspective, it combines an exposition on the technical progress made in the field and a marked interest in the role played by remarkable individuals and scientific schools and institutions on a rapidly evolving social background. It underlines the newly raised technical questions and their answers, and the ongoing reflections on the bases of continuum mechanics associated, or in competition, with other branches of the physical sciences, including thermodynamics. The emphasis is placed on the development of a more realistic modeling of deformable solids and the exploitation of new mathematical tools. The book presents a balanced appraisal of advances made in various parts of the world. The author contributes his technical expertise, personal recollections, and international experience to this general overview, which is very informative albeit concise.