Nonlinear Data Assimilation

Nonlinear Data Assimilation
Author: Peter Jan Van Leeuwen
Publisher: Springer
Total Pages: 130
Release: 2015-07-22
Genre: Mathematics
ISBN: 3319183478

This book contains two review articles on nonlinear data assimilation that deal with closely related topics but were written and can be read independently. Both contributions focus on so-called particle filters. The first contribution by Jan van Leeuwen focuses on the potential of proposal densities. It discusses the issues with present-day particle filters and explorers new ideas for proposal densities to solve them, converging to particle filters that work well in systems of any dimension, closing the contribution with a high-dimensional example. The second contribution by Cheng and Reich discusses a unified framework for ensemble-transform particle filters. This allows one to bridge successful ensemble Kalman filters with fully nonlinear particle filters, and allows a proper introduction of localization in particle filters, which has been lacking up to now.

Land Surface Observation, Modeling and Data Assimilation

Land Surface Observation, Modeling and Data Assimilation
Author: Shunlin Liang
Publisher: World Scientific
Total Pages: 491
Release: 2013
Genre: Science
ISBN: 9814472611

This book is unique in its ambitious and comprehensive coverage of earth system land surface characterization, from observation and modeling to data assimilation, including recent developments in theory and techniques, and novel application cases. The contributing authors are active research scientists, and many of them are internationally known leading experts in their areas, ensuring that the text is authoritative.This book comprises four parts that are logically connected from data, modeling, data assimilation integrating data and models to applications. Land data assimilation is the key focus of the book, which encompasses both theoretical and applied aspects with various novel methodologies and applications to the water cycle, carbon cycle, crop monitoring, and yield estimation.Readers can benefit from a state-of-the-art presentation of the latest tools and their usage for understanding earth system processes. Discussions in the book present and stimulate new challenges and questions facing today''s earth science and modeling communities.

Large Scale Inverse Problems

Large Scale Inverse Problems
Author: Mike Cullen
Publisher: Walter de Gruyter
Total Pages: 216
Release: 2013-08-29
Genre: Mathematics
ISBN: 3110282267

This book is thesecond volume of a three volume series recording the "Radon Special Semester 2011 on Multiscale Simulation & Analysis in Energy and the Environment" that took placein Linz, Austria, October 3-7, 2011. This volume addresses the common ground in the mathematical and computational procedures required for large-scale inverse problems and data assimilation in forefront applications. The solution of inverse problems is fundamental to a wide variety of applications such as weather forecasting, medical tomography, and oil exploration. Regularisation techniques are needed to ensure solutions of sufficient quality to be useful, and soundly theoretically based. This book addresses the common techniques required for all the applications, and is thus truly interdisciplinary. Thiscollection of surveyarticlesfocusses onthe large inverse problems commonly arising in simulation and forecasting in the earth sciences. For example, operational weather forecasting models have between 107 and 108 degrees of freedom. Even so, these degrees of freedom represent grossly space-time averaged properties of the atmosphere. Accurate forecasts require accurate initial conditions. With recent developments in satellite data, there are between 106 and 107 observations each day. However, while these also represent space-time averaged properties, the averaging implicit in the measurements is quite different from that used in the models. In atmosphere and ocean applications, there is a physically-based model available which can be used to regularise the problem. We assume that there is a set of observations with known error characteristics available over a period of time. The basic deterministic technique is to fit a model trajectory to the observations over a period of time to within the observation error. Since the model is not perfect the model trajectory has to be corrected, which defines the data assimilation problem. The stochastic view can be expressed by using an ensemble of model trajectories, and calculating corrections to both the mean value and the spread which allow the observations to be fitted by each ensemble member. In other areas of earth science, only the structure of the model formulation itself is known and the aim is to use the past observation history to determine the unknown model parameters. The book records the achievements of Workshop2 "Large-Scale Inverse Problems and Applications in the Earth Sciences". Itinvolves experts in the theory of inverse problems together with experts working on both theoretical and practical aspects of the techniques by which large inverse problems arise in the earth sciences.

Data Assimilation

Data Assimilation
Author: William Lahoz
Publisher: Springer Science & Business Media
Total Pages: 710
Release: 2010-07-23
Genre: Science
ISBN: 3540747036

Data assimilation methods were largely developed for operational weather forecasting, but in recent years have been applied to an increasing range of earth science disciplines. This book will set out the theoretical basis of data assimilation with contributions by top international experts in the field. Various aspects of data assimilation are discussed including: theory; observations; models; numerical weather prediction; evaluation of observations and models; assessment of future satellite missions; application to components of the Earth System. References are made to recent developments in data assimilation theory (e.g. Ensemble Kalman filter), and to novel applications of the data assimilation method (e.g. ionosphere, Mars data assimilation).

Applications of Data Assimilation and Inverse Problems in the Earth Sciences

Applications of Data Assimilation and Inverse Problems in the Earth Sciences
Author: Alik Ismail-Zadeh
Publisher: Cambridge University Press
Total Pages: 369
Release: 2023-06-30
Genre: Mathematics
ISBN: 1009180401

A comprehensive reference on data assimilation and inverse problems, and their applications across a broad range of geophysical disciplines, ideal for researchers and graduate students. It highlights the importance of data assimilation for understanding dynamical processes of the Earth and its space environment, and summarises recent advances.

Data Assimilation: Methods, Algorithms, and Applications

Data Assimilation: Methods, Algorithms, and Applications
Author: Mark Asch
Publisher: SIAM
Total Pages: 310
Release: 2016-12-29
Genre: Mathematics
ISBN: 1611974542

Data assimilation is an approach that combines observations and model output, with the objective of improving the latter. This book places data assimilation into the broader context of inverse problems and the theory, methods, and algorithms that are used for their solution. It provides a framework for, and insight into, the inverse problem nature of data assimilation, emphasizing why and not just how. Methods and diagnostics are emphasized, enabling readers to readily apply them to their own field of study. Readers will find a comprehensive guide that is accessible to nonexperts; numerous examples and diverse applications from a broad range of domains, including geophysics and geophysical flows, environmental acoustics, medical imaging, mechanical and biomedical engineering, economics and finance, and traffic control and urban planning; and the latest methods for advanced data assimilation, combining variational and statistical approaches.

Data Assimilation for the Earth System

Data Assimilation for the Earth System
Author: Richard Swinbank
Publisher: Springer Science & Business Media
Total Pages: 377
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 9401000298

Data assimilation is the combination of information from observations and models of a particular physical system in order to get the best possible estimate of the state of that system. The technique has wide applications across a range of earth sciences, a major application being the production of operational weather forecasts. Others include oceanography, atmospheric chemistry, climate studies, and hydrology. Data Assimilation for the Earth System is a comprehensive survey of both the theory of data assimilation and its application in a range of earth system sciences. Data assimilation is a key technique in the analysis of remote sensing observations and is thus particularly useful for those analysing the wealth of measurements from recent research satellites. This book is suitable for postgraduate students and those working on the application of data assimilation in meteorology, oceanography and other earth sciences.

Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. IV)

Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. IV)
Author: Seon Ki Park
Publisher: Springer Nature
Total Pages: 707
Release: 2021-11-09
Genre: Science
ISBN: 3030777227

This book contains the most recent progress in data assimilation in meteorology, oceanography and hydrology including land surface. It spans both theoretical and applicative aspects with various methodologies such as variational, Kalman filter, ensemble, Monte Carlo and artificial intelligence methods. Besides data assimilation, other important topics are also covered including adaptive observations, sensitivity analysis, parameter estimation and AI applications. The book is useful to individual researchers as well as graduate students for a reference in the field of data assimilation.

Data-Driven Computational Methods

Data-Driven Computational Methods
Author: John Harlim
Publisher: Cambridge University Press
Total Pages: 171
Release: 2018-07-12
Genre: Computers
ISBN: 1108472478

Describes computational methods for parametric and nonparametric modeling of stochastic dynamics. Aimed at graduate students, and suitable for self-study.