An Introduction To Universal Artificial Intelligence
Download An Introduction To Universal Artificial Intelligence full books in PDF, epub, and Kindle. Read online free An Introduction To Universal Artificial Intelligence ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Marcus Hutter |
Publisher | : Springer Science & Business Media |
Total Pages | : 294 |
Release | : 2005-12-29 |
Genre | : Computers |
ISBN | : 3540268774 |
Personal motivation. The dream of creating artificial devices that reach or outperform human inteUigence is an old one. It is also one of the dreams of my youth, which have never left me. What makes this challenge so interesting? A solution would have enormous implications on our society, and there are reasons to believe that the AI problem can be solved in my expected lifetime. So, it's worth sticking to it for a lifetime, even if it takes 30 years or so to reap the benefits. The AI problem. The science of artificial intelligence (AI) may be defined as the construction of intelligent systems and their analysis. A natural definition of a system is anything that has an input and an output stream. Intelligence is more complicated. It can have many faces like creativity, solving prob lems, pattern recognition, classification, learning, induction, deduction, build ing analogies, optimization, surviving in an environment, language processing, and knowledge. A formal definition incorporating every aspect of intelligence, however, seems difficult. Most, if not all known facets of intelligence can be formulated as goal driven or, more precisely, as maximizing some utility func tion. It is, therefore, sufficient to study goal-driven AI; e. g. the (biological) goal of animals and humans is to survive and spread. The goal of AI systems should be to be useful to humans.
Author | : Marcus Hutter |
Publisher | : Springer Science & Business Media |
Total Pages | : 294 |
Release | : 2004-10-12 |
Genre | : Computers |
ISBN | : 3540221395 |
Personal motivation. The dream of creating artificial devices that reach or outperform human inteUigence is an old one. It is also one of the dreams of my youth, which have never left me. What makes this challenge so interesting? A solution would have enormous implications on our society, and there are reasons to believe that the AI problem can be solved in my expected lifetime. So, it's worth sticking to it for a lifetime, even if it takes 30 years or so to reap the benefits. The AI problem. The science of artificial intelligence (AI) may be defined as the construction of intelligent systems and their analysis. A natural definition of a system is anything that has an input and an output stream. Intelligence is more complicated. It can have many faces like creativity, solving prob lems, pattern recognition, classification, learning, induction, deduction, build ing analogies, optimization, surviving in an environment, language processing, and knowledge. A formal definition incorporating every aspect of intelligence, however, seems difficult. Most, if not all known facets of intelligence can be formulated as goal driven or, more precisely, as maximizing some utility func tion. It is, therefore, sufficient to study goal-driven AI; e. g. the (biological) goal of animals and humans is to survive and spread. The goal of AI systems should be to be useful to humans.
Author | : Marcus Hutter |
Publisher | : CRC Press |
Total Pages | : 517 |
Release | : 2024-05-28 |
Genre | : Computers |
ISBN | : 1003821979 |
An Introduction to Universal Artificial Intelligence provides the formal underpinning of what it means for an agent to act intelligently in an unknown environment. First presented in Universal Algorithmic Intelligence (Hutter, 2000), UAI offers a framework in which virtually all AI problems can be formulated, and a theory of how to solve them. UAI unifies ideas from sequential decision theory, Bayesian inference, and algorithmic information theory to construct AIXI, an optimal reinforcement learning agent that learns to act optimally in unknown environments. AIXI is the theoretical gold standard for intelligent behavior. The book covers both the theoretical and practical aspects of UAI. Bayesian updating can be done efficiently with context tree weighting, and planning can be approximated by sampling with Monte Carlo tree search. It provides algorithms for the reader to implement, and experimental results to compare against. These algorithms are used to approximate AIXI. The book ends with a philosophical discussion of Artificial General Intelligence: Can super-intelligent agents even be constructed? Is it inevitable that they will be constructed, and what are the potential consequences? This text is suitable for late undergraduate students. It provides an extensive chapter to fill in the required mathematics, probability, information, and computability theory background.
Author | : David J. Gunkel |
Publisher | : Polity |
Total Pages | : 320 |
Release | : 2020-01-07 |
Genre | : Social Science |
ISBN | : 9781509533169 |
Communication and artificial intelligence (AI) are closely related. It is communication – particularly interpersonal conversational interaction – that provides AI with its defining test case and experimental evidence. Likewise, recent developments in AI introduce new challenges and opportunities for communication studies. Technologies such as machine translation of human languages, spoken dialogue systems like Siri, algorithms capable of producing publishable journalistic content, and social robots are all designed to communicate with users in a human-like way. This timely and original textbook provides educators and students with a much-needed resource, connecting the dots between the science of AI and the discipline of communication studies. Clearly outlining the topic's scope, content and future, the text introduces key issues and debates, highlighting the importance and relevance of AI to communication studies. In lively and accessible prose, David Gunkel provides a new generation with the information, knowledge, and skills necessary to working and living in a world where social interaction is no longer restricted to humans. The first work of its kind, An Introduction to Communication and Artificial Intelligence is the go-to textbook for students and scholars getting to grips with this crucial interdisciplinary topic.
Author | : Ben Goertzel |
Publisher | : Springer Science & Business Media |
Total Pages | : 518 |
Release | : 2007-01-17 |
Genre | : Computers |
ISBN | : 3540686770 |
“Only a small community has concentratedon general intelligence. No one has tried to make a thinking machine . . . The bottom line is that we really haven’t progressed too far toward a truly intelligent machine. We have collections of dumb specialists in small domains; the true majesty of general intelligence still awaits our attack. . . . We have got to get back to the deepest questions of AI and general intelligence. . . ” –MarvinMinsky as interviewed in Hal’s Legacy, edited by David Stork, 2000. Our goal in creating this edited volume has been to ?ll an apparent gap in the scienti?c literature, by providing a coherent presentation of a body of contemporary research that, in spite of its integral importance, has hitherto kept a very low pro?le within the scienti?c and intellectual community. This body of work has not been given a name before; in this book we christen it “Arti?cial General Intelligence” (AGI). What distinguishes AGI work from run-of-the-mill “arti?cial intelligence” research is that it is explicitly focused on engineering general intelligence in the short term. We have been active researchers in the AGI ?eld for many years, and it has been a pleasure to gather together papers from our colleagues working on related ideas from their own perspectives. In the Introduction we give a conceptual overview of the AGI ?eld, and also summarize and interrelate the key ideas of the papers in the subsequent chapters.
Author | : Rolf Pfeifer |
Publisher | : MIT Press |
Total Pages | : 724 |
Release | : 2001-07-27 |
Genre | : Computers |
ISBN | : 9780262250795 |
The book includes all the background material required to understand the principles underlying intelligence, as well as enough detailed information on intelligent robotics and simulated agents so readers can begin experiments and projects on their own. By the mid-1980s researchers from artificial intelligence, computer science, brain and cognitive science, and psychology realized that the idea of computers as intelligent machines was inappropriate. The brain does not run "programs"; it does something entirely different. But what? Evolutionary theory says that the brain has evolved not to do mathematical proofs but to control our behavior, to ensure our survival. Researchers now agree that intelligence always manifests itself in behavior—thus it is behavior that we must understand. An exciting new field has grown around the study of behavior-based intelligence, also known as embodied cognitive science, "new AI," and "behavior-based AI." This book provides a systematic introduction to this new way of thinking. After discussing concepts and approaches such as subsumption architecture, Braitenberg vehicles, evolutionary robotics, artificial life, self-organization, and learning, the authors derive a set of principles and a coherent framework for the study of naturally and artificially intelligent systems, or autonomous agents. This framework is based on a synthetic methodology whose goal is understanding by designing and building. The book includes all the background material required to understand the principles underlying intelligence, as well as enough detailed information on intelligent robotics and simulated agents so readers can begin experiments and projects on their own. The reader is guided through a series of case studies that illustrate the design principles of embodied cognitive science.
Author | : Wolfgang Ertel |
Publisher | : Springer |
Total Pages | : 365 |
Release | : 2018-01-18 |
Genre | : Computers |
ISBN | : 3319584871 |
This accessible and engaging textbook presents a concise introduction to the exciting field of artificial intelligence (AI). The broad-ranging discussion covers the key subdisciplines within the field, describing practical algorithms and concrete applications in the areas of agents, logic, search, reasoning under uncertainty, machine learning, neural networks, and reinforcement learning. Fully revised and updated, this much-anticipated second edition also includes new material on deep learning. Topics and features: presents an application-focused and hands-on approach to learning, with supplementary teaching resources provided at an associated website; contains numerous study exercises and solutions, highlighted examples, definitions, theorems, and illustrative cartoons; includes chapters on predicate logic, PROLOG, heuristic search, probabilistic reasoning, machine learning and data mining, neural networks and reinforcement learning; reports on developments in deep learning, including applications of neural networks to generate creative content such as text, music and art (NEW); examines performance evaluation of clustering algorithms, and presents two practical examples explaining Bayes’ theorem and its relevance in everyday life (NEW); discusses search algorithms, analyzing the cycle check, explaining route planning for car navigation systems, and introducing Monte Carlo Tree Search (NEW); includes a section in the introduction on AI and society, discussing the implications of AI on topics such as employment and transportation (NEW). Ideal for foundation courses or modules on AI, this easy-to-read textbook offers an excellent overview of the field for students of computer science and other technical disciplines, requiring no more than a high-school level of knowledge of mathematics to understand the material.
Author | : Yarden Katz |
Publisher | : Columbia University Press |
Total Pages | : 176 |
Release | : 2020-11-17 |
Genre | : Social Science |
ISBN | : 023155107X |
Dramatic statements about the promise and peril of artificial intelligence for humanity abound, as an industry of experts claims that AI is poised to reshape nearly every sphere of life. Who profits from the idea that the age of AI has arrived? Why do ideas of AI’s transformative potential keep reappearing in social and political discourse, and how are they linked to broader political agendas? Yarden Katz reveals the ideology embedded in the concept of artificial intelligence, contending that it both serves and mimics the logic of white supremacy. He demonstrates that understandings of AI, as a field and a technology, have shifted dramatically over time based on the needs of its funders and the professional class that formed around it. From its origins in the Cold War military-industrial complex through its present-day Silicon Valley proselytizers and eager policy analysts, AI has never been simply a technical project enabled by larger data and better computing. Drawing on intimate familiarity with the field and its practices, Katz instead asks us to see how AI reinforces models of knowledge that assume white male superiority and an imperialist worldview. Only by seeing the connection between artificial intelligence and whiteness can we prioritize alternatives to the conception of AI as an all-encompassing technological force. Bringing together theories of whiteness and race in the humanities and social sciences with a deep understanding of the history and practice of science and computing, Artificial Whiteness is an incisive, urgent critique of the uses of AI as a political tool to uphold social hierarchies.
Author | : Melanie Mitchell |
Publisher | : MIT Press |
Total Pages | : 226 |
Release | : 1998-03-02 |
Genre | : Computers |
ISBN | : 9780262631853 |
Genetic algorithms have been used in science and engineering as adaptive algorithms for solving practical problems and as computational models of natural evolutionary systems. This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics—particularly in machine learning, scientific modeling, and artificial life—and reviews a broad span of research, including the work of Mitchell and her colleagues. The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting "general purpose" nature of genetic algorithms as search methods that can be employed across disciplines. An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.
Author | : Melanie Mitchell |
Publisher | : Farrar, Straus and Giroux |
Total Pages | : 216 |
Release | : 2019-10-15 |
Genre | : Computers |
ISBN | : 0374715238 |
“After reading Mitchell’s guide, you’ll know what you don’t know and what other people don’t know, even though they claim to know it. And that’s invaluable." –The New York Times A leading computer scientist brings human sense to the AI bubble No recent scientific enterprise has proved as alluring, terrifying, and filled with extravagant promise and frustrating setbacks as artificial intelligence. The award-winning author Melanie Mitchell, a leading computer scientist, now reveals AI’s turbulent history and the recent spate of apparent successes, grand hopes, and emerging fears surrounding it. In Artificial Intelligence, Mitchell turns to the most urgent questions concerning AI today: How intelligent—really—are the best AI programs? How do they work? What can they actually do, and when do they fail? How humanlike do we expect them to become, and how soon do we need to worry about them surpassing us? Along the way, she introduces the dominant models of modern AI and machine learning, describing cutting-edge AI programs, their human inventors, and the historical lines of thought underpinning recent achievements. She meets with fellow experts such as Douglas Hofstadter, the cognitive scientist and Pulitzer Prize–winning author of the modern classic Gödel, Escher, Bach, who explains why he is “terrified” about the future of AI. She explores the profound disconnect between the hype and the actual achievements in AI, providing a clear sense of what the field has accomplished and how much further it has to go. Interweaving stories about the science of AI and the people behind it, Artificial Intelligence brims with clear-sighted, captivating, and accessible accounts of the most interesting and provocative modern work in the field, flavored with Mitchell’s humor and personal observations. This frank, lively book is an indispensable guide to understanding today’s AI, its quest for “human-level” intelligence, and its impact on the future for us all.