An Introduction to the Theory of Functional Equations and Inequalities

An Introduction to the Theory of Functional Equations and Inequalities
Author: Marek Kuczma
Publisher: Springer Science & Business Media
Total Pages: 595
Release: 2009-03-12
Genre: Mathematics
ISBN: 3764387491

Marek Kuczma was born in 1935 in Katowice, Poland, and died there in 1991. After finishing high school in his home town, he studied at the Jagiellonian University in Kraków. He defended his doctoral dissertation under the supervision of Stanislaw Golab. In the year of his habilitation, in 1963, he obtained a position at the Katowice branch of the Jagiellonian University (now University of Silesia, Katowice), and worked there till his death. Besides his several administrative positions and his outstanding teaching activity, he accomplished excellent and rich scientific work publishing three monographs and 180 scientific papers. He is considered to be the founder of the celebrated Polish school of functional equations and inequalities. "The second half of the title of this book describes its contents adequately. Probably even the most devoted specialist would not have thought that about 300 pages can be written just about the Cauchy equation (and on some closely related equations and inequalities). And the book is by no means chatty, and does not even claim completeness. Part I lists the required preliminary knowledge in set and measure theory, topology and algebra. Part II gives details on solutions of the Cauchy equation and of the Jensen inequality [...], in particular on continuous convex functions, Hamel bases, on inequalities following from the Jensen inequality [...]. Part III deals with related equations and inequalities (in particular, Pexider, Hosszú, and conditional equations, derivations, convex functions of higher order, subadditive functions and stability theorems). It concludes with an excursion into the field of extensions of homomorphisms in general." (Janos Aczel, Mathematical Reviews) "This book is a real holiday for all the mathematicians independently of their strict speciality. One can imagine what deliciousness represents this book for functional equationists." (B. Crstici, Zentralblatt für Mathematik)

Introduction to Functional Equations

Introduction to Functional Equations
Author: Costas Efthimiou
Publisher: American Mathematical Soc.
Total Pages: 381
Release: 2011-10-13
Genre: Mathematics
ISBN: 0821853147

Functions and their properties have been part of the rigorous precollege curriculum for decades. And functional equations have been a favorite topic of the leading national and international mathematical competitions. Yet the subject has not received equal attention by authors at an introductory level. The majority of the books on the topic remain unreachable to the curious and intelligent precollege student. The present book is an attempt to eliminate this disparity. The book opens with a review chapter on functions, which collects the relevant foundational information on functions, plus some material potentially new to the reader. The next chapter presents a working definition of functional equations and explains the difficulties in trying to systematize the theory. With each new chapter, the author presents methods for the solution of a particular group of equations. Each chapter is complemented with many solved examples, the majority of which are taken from mathematical competitions and professional journals. The book ends with a chapter of unsolved problems and some other auxiliary material. The book is an invaluable resource for precollege and college students who want to deepen their knowledge of functions and their properties, for teachers and instructors who wish to enrich their curricula, and for any lover of mathematical problem-solving techniques. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.

A Short Course on Functional Equations

A Short Course on Functional Equations
Author: J. Aczél
Publisher: Springer Science & Business Media
Total Pages: 175
Release: 2012-12-06
Genre: Mathematics
ISBN: 9400937490

Recently I taught short courses on functional equations at several universities (Barcelona, Bern, Graz, Hamburg, Milan, Waterloo). My aim was to introduce the most important equations and methods of solution through actual (not artifi cial) applications which were recent and with which I had something to do. Most of them happened to be related to the social or behavioral sciences. All were originally answers to questions posed by specialists in the respective applied fields. Here I give a somewhat extended version of these lectures, with more recent results and applications included. As previous knowledge just the basic facts of calculus and algebra are supposed. Parts where somewhat more (measure theory) is needed and sketches of lengthier calcula tions are set in fine print. I am grateful to Drs. J. Baker (Waterloo, Ont.), W. Forg-Rob (Innsbruck, Austria) and C. Wagner (Knoxville, Tenn.) for critical remarks and to Mrs. Brenda Law for care ful computer-typing of the manuscript (in several versions). A note on numbering of statements and references: The numbering of Lemmata, Propositions, Theorems, Corollaries and (separately) formulae starts anew in each section. If quoted in another section, the section number is added, e.g. (2.10) or Theorem 1.2. References are quoted by the last names of the authors and the last two digits of the year, e.g. Daroczy-Losonczi [671. 1 1. An aggregation theorem for allocation problems. Cauchy equation for single-and multiplace functions. Two extension theorems.

Functional Equations on Hypergroups

Functional Equations on Hypergroups
Author: László Székelyhidi
Publisher: World Scientific
Total Pages: 210
Release: 2013
Genre: Mathematics
ISBN: 9814407003

The theory of hypergroups is a rapidly developing area of mathematics due to its diverse applications in different areas like probability, harmonic analysis, etc. This book exhibits the use of functional equations and spectral synthesis in the theory of hypergroups. It also presents the fruitful consequences of this delicate "marriage" where the methods of spectral analysis and synthesis can provide an efficient tool in characterization problems of function classes on hypergroups. This book is written for the interested reader who has open eyes for both functional equations and hypergroups, and who dares to enter a new world of ideas, a new world of methods - and, sometimes, a new world of unexpected difficulties.

Functional Equations and Inequalities with Applications

Functional Equations and Inequalities with Applications
Author: Palaniappan Kannappan
Publisher: Springer Science & Business Media
Total Pages: 817
Release: 2009-06-10
Genre: Mathematics
ISBN: 0387894926

Functional Equations and Inequalities with Applications presents a comprehensive, nearly encyclopedic, study of the classical topic of functional equations. This self-contained monograph explores all aspects of functional equations and their applications to related topics, such as differential equations, integral equations, the Laplace transformation, the calculus of finite differences, and many other basic tools in analysis. Each chapter examines a particular family of equations and gives an in-depth study of its applications as well as examples and exercises to support the material.

Handbook of Functional Equations

Handbook of Functional Equations
Author: Themistocles M. Rassias
Publisher: Springer
Total Pages: 555
Release: 2014-11-18
Genre: Mathematics
ISBN: 1493912461

As Richard Bellman has so elegantly stated at the Second International Conference on General Inequalities (Oberwolfach, 1978), “There are three reasons for the study of inequalities: practical, theoretical, and aesthetic.” On the aesthetic aspects, he said, “As has been pointed out, beauty is in the eye of the beholder. However, it is generally agreed that certain pieces of music, art, or mathematics are beautiful. There is an elegance to inequalities that makes them very attractive.” The content of the Handbook focuses mainly on both old and recent developments on approximate homomorphisms, on a relation between the Hardy–Hilbert and the Gabriel inequality, generalized Hardy–Hilbert type inequalities on multiple weighted Orlicz spaces, half-discrete Hilbert-type inequalities, on affine mappings, on contractive operators, on multiplicative Ostrowski and trapezoid inequalities, Ostrowski type inequalities for the Riemann–Stieltjes integral, means and related functional inequalities, Weighted Gini means, controlled additive relations, Szasz–Mirakyan operators, extremal problems in polynomials and entire functions, applications of functional equations to Dirichlet problem for doubly connected domains, nonlinear elliptic problems depending on parameters, on strongly convex functions, as well as applications to some new algorithms for solving general equilibrium problems, inequalities for the Fisher’s information measures, financial networks, mathematical models of mechanical fields in media with inclusions and holes.

Functional Equations and How to Solve Them

Functional Equations and How to Solve Them
Author: Christopher G. Small
Publisher: Springer Science & Business Media
Total Pages: 139
Release: 2007-04-03
Genre: Mathematics
ISBN: 0387489010

Many books have been written on the theory of functional equations, but very few help readers solve functional equations in mathematics competitions and mathematical problem solving. This book fills that gap. Each chapter includes a list of problems associated with the covered material. These vary in difficulty, with the easiest being accessible to any high school student who has read the chapter carefully. The most difficult will challenge students studying for the International Mathematical Olympiad or the Putnam Competition. An appendix provides a springboard for further investigation of the concepts of limits, infinite series and continuity.

Handbook of Mathematics for Engineers and Scientists

Handbook of Mathematics for Engineers and Scientists
Author: Andrei D. Polyanin
Publisher: CRC Press
Total Pages: 1542
Release: 2006-11-27
Genre: Mathematics
ISBN: 1420010514

Covering the main fields of mathematics, this handbook focuses on the methods used for obtaining solutions of various classes of mathematical equations that underlie the mathematical modeling of numerous phenomena and processes in science and technology. The authors describe formulas, methods, equations, and solutions that are frequently used in scientific and engineering applications and present classical as well as newer solution methods for various mathematical equations. The book supplies numerous examples, graphs, figures, and diagrams and contains many results in tabular form, including finite sums and series and exact solutions of differential, integral, and functional equations.

Functional Equations, Inequalities and Applications

Functional Equations, Inequalities and Applications
Author: Themistocles RASSIAS
Publisher: Springer Science & Business Media
Total Pages: 221
Release: 2013-03-09
Genre: Mathematics
ISBN: 940170225X

Functional Equations, Inequalities and Applications provides an extensive study of several important equations and inequalities, useful in a number of problems in mathematical analysis. Subjects dealt with include the generalized Cauchy functional equation, the Ulam stability theory in the geometry of partial differential equations, stability of a quadratic functional equation in Banach modules, functional equations and mean value theorems, isometric mappings, functional inequalities of iterative type, related to a Cauchy functional equation, the median principle for inequalities and applications, Hadamard and Dragomir-Agarwal inequalities, the Euler formulae and convex functions and approximate algebra homomorphisms. Also included are applications to some problems of pure and applied mathematics. This book will be of particular interest to mathematicians and graduate students whose work involves functional equations, inequalities and applications.