An Introduction To Riemannian Geometry
Download An Introduction To Riemannian Geometry full books in PDF, epub, and Kindle. Read online free An Introduction To Riemannian Geometry ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Leonor Godinho |
Publisher | : Springer |
Total Pages | : 476 |
Release | : 2014-07-26 |
Genre | : Mathematics |
ISBN | : 3319086669 |
Unlike many other texts on differential geometry, this textbook also offers interesting applications to geometric mechanics and general relativity. The first part is a concise and self-contained introduction to the basics of manifolds, differential forms, metrics and curvature. The second part studies applications to mechanics and relativity including the proofs of the Hawking and Penrose singularity theorems. It can be independently used for one-semester courses in either of these subjects. The main ideas are illustrated and further developed by numerous examples and over 300 exercises. Detailed solutions are provided for many of these exercises, making An Introduction to Riemannian Geometry ideal for self-study.
Author | : John M. Lee |
Publisher | : Springer Science & Business Media |
Total Pages | : 232 |
Release | : 2006-04-06 |
Genre | : Mathematics |
ISBN | : 0387227261 |
This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet’s Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.
Author | : John M. Lee |
Publisher | : Springer |
Total Pages | : 447 |
Release | : 2019-01-02 |
Genre | : Mathematics |
ISBN | : 3319917552 |
This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet’s Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.
Author | : Isaac Chavel |
Publisher | : Cambridge University Press |
Total Pages | : 4 |
Release | : 2006-04-10 |
Genre | : Mathematics |
ISBN | : 1139452576 |
This book provides an introduction to Riemannian geometry, the geometry of curved spaces, for use in a graduate course. Requiring only an understanding of differentiable manifolds, the author covers the introductory ideas of Riemannian geometry followed by a selection of more specialized topics. Also featured are Notes and Exercises for each chapter, to develop and enrich the reader's appreciation of the subject. This second edition, first published in 2006, has a clearer treatment of many topics than the first edition, with new proofs of some theorems and a new chapter on the Riemannian geometry of surfaces. The main themes here are the effect of the curvature on the usual notions of classical Euclidean geometry, and the new notions and ideas motivated by curvature itself. Completely new themes created by curvature include the classical Rauch comparison theorem and its consequences in geometry and topology, and the interaction of microscopic behavior of the geometry with the macroscopic structure of the space.
Author | : Charles Ernest Weatherburn |
Publisher | : CUP Archive |
Total Pages | : 214 |
Release | : 1938 |
Genre | : Calculus of tensors |
ISBN | : |
Author | : |
Publisher | : Academic Press |
Total Pages | : 441 |
Release | : 1975-08-22 |
Genre | : Mathematics |
ISBN | : 0080873790 |
An Introduction to Differentiable Manifolds and Riemannian Geometry
Author | : D. Bao |
Publisher | : Springer Science & Business Media |
Total Pages | : 453 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461212685 |
This book focuses on the elementary but essential problems in Riemann-Finsler Geometry, which include a repertoire of rigidity and comparison theorems, and an array of explicit examples, illustrating many phenomena which admit only Finslerian interpretations. "This book offers the most modern treatment of the topic ..." EMS Newsletter.
Author | : Bernhard Riemann |
Publisher | : Birkhäuser |
Total Pages | : 181 |
Release | : 2016-04-19 |
Genre | : Mathematics |
ISBN | : 3319260421 |
This book presents William Clifford’s English translation of Bernhard Riemann’s classic text together with detailed mathematical, historical and philosophical commentary. The basic concepts and ideas, as well as their mathematical background, are provided, putting Riemann’s reasoning into the more general and systematic perspective achieved by later mathematicians and physicists (including Helmholtz, Ricci, Weyl, and Einstein) on the basis of his seminal ideas. Following a historical introduction that positions Riemann’s work in the context of his times, the history of the concept of space in philosophy, physics and mathematics is systematically presented. A subsequent chapter on the reception and influence of the text accompanies the reader from Riemann’s times to contemporary research. Not only mathematicians and historians of the mathematical sciences, but also readers from other disciplines or those with an interest in physics or philosophy will find this work both appealing and insightful.
Author | : Joel W. Robbin |
Publisher | : Springer Nature |
Total Pages | : 426 |
Release | : 2022-01-12 |
Genre | : Mathematics |
ISBN | : 3662643405 |
This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.
Author | : Frank Morgan |
Publisher | : A K Peters/CRC Press |
Total Pages | : 0 |
Release | : 2009-06-22 |
Genre | : Mathematics |
ISBN | : 9781568814711 |
This classic text serves as a tool for self-study; it is also used as a basic text for undergraduate courses in differential geometry. The author's ability to extract the essential elements of the theory in a lucid and concise fashion allows the student easy access to the material and enables the instructor to add emphasis and cover special topics. The extraordinary wealth of examples within the exercises and the new material, ranging from isoperimetric problems to comments on Einstein's original paper on relativity theory, enhance this new edition.