An Introduction to Linear Transformations in Hilbert Space

An Introduction to Linear Transformations in Hilbert Space
Author: Francis Joseph Murray
Publisher: Princeton University Press
Total Pages: 148
Release: 2016-03-02
Genre: Mathematics
ISBN: 1400882265

A classic introduction to linear transformations in Hilbert space from the acclaimed Annals of Mathematics Studies series Princeton University Press is proud to have published the Annals of Mathematics Studies since 1940. One of the oldest and most respected series in science publishing, it has included many of the most important and influential mathematical works of the twentieth century. The series continues this tradition as Princeton University Press publishes the major works of the twenty-first century. To mark the continued success of the series, all books are available in paperback and as ebooks.

Introduction to Hilbert Space

Introduction to Hilbert Space
Author: Sterling K. Berberian
Publisher: American Mathematical Soc.
Total Pages: 226
Release: 1999
Genre: Mathematics
ISBN: 0821819127

From the Preface: ``This textbook has evolved from a set of lecture notes ... In both the course and the book, I have in mind first- or second-year graduate students in Mathematics and related fields such as Physics ... It is necessary for the reader to have a foundation in advanced calculus which includes familiarity with: least upper bound (LUB) and greatest lower bound (GLB), the concept of function, $\epsilon$'s and their companion $\delta$'s, and basic properties of sequences of real and complex numbers (convergence, Cauchy's criterion, the Weierstrass-Bolzano theorem). It is not presupposed that the reader is acquainted with vector spaces ... , matrices ... , or determinants ... There are over four hundred exercises, most of them easy ... It is my hope that this book, aside from being an exposition of certain basic material on Hilbert space, may also serve as an introduction to other areas of functional analysis.''

An Introduction to Hilbert Space

An Introduction to Hilbert Space
Author: N. Young
Publisher: Cambridge University Press
Total Pages: 254
Release: 1988-07-21
Genre: Mathematics
ISBN: 1107717167

This textbook is an introduction to the theory of Hilbert space and its applications. The notion of Hilbert space is central in functional analysis and is used in numerous branches of pure and applied mathematics. Dr Young has stressed applications of the theory, particularly to the solution of partial differential equations in mathematical physics and to the approximation of functions in complex analysis. Some basic familiarity with real analysis, linear algebra and metric spaces is assumed, but otherwise the book is self-contained. It is based on courses given at the University of Glasgow and contains numerous examples and exercises (many with solutions). Thus it will make an excellent first course in Hilbert space theory at either undergraduate or graduate level and will also be of interest to electrical engineers and physicists, particularly those involved in control theory and filter design.

An Introduction to Hilbert Space and Quantum Logic

An Introduction to Hilbert Space and Quantum Logic
Author: David W. Cohen
Publisher: Springer Science & Business Media
Total Pages: 159
Release: 2012-12-06
Genre: Science
ISBN: 1461388414

Historically, nonclassical physics developed in three stages. First came a collection of ad hoc assumptions and then a cookbook of equations known as "quantum mechanics". The equations and their philosophical underpinnings were then collected into a model based on the mathematics of Hilbert space. From the Hilbert space model came the abstaction of "quantum logics". This book explores all three stages, but not in historical order. Instead, in an effort to illustrate how physics and abstract mathematics influence each other we hop back and forth between a purely mathematical development of Hilbert space, and a physically motivated definition of a logic, partially linking the two throughout, and then bringing them together at the deepest level in the last two chapters. This book should be accessible to undergraduate and beginning graduate students in both mathematics and physics. The only strict prerequisites are calculus and linear algebra, but the level of mathematical sophistication assumes at least one or two intermediate courses, for example in mathematical analysis or advanced calculus. No background in physics is assumed.

An Introduction to the Theory of Linear Spaces

An Introduction to the Theory of Linear Spaces
Author: Georgi E. Shilov
Publisher: Courier Corporation
Total Pages: 323
Release: 2012-12-03
Genre: Mathematics
ISBN: 0486139433

Introductory treatment offers a clear exposition of algebra, geometry, and analysis as parts of an integrated whole rather than separate subjects. Numerous examples illustrate many different fields, and problems include hints or answers. 1961 edition.

An Introduction to Wavelets Through Linear Algebra

An Introduction to Wavelets Through Linear Algebra
Author: M.W. Frazier
Publisher: Springer
Total Pages: 517
Release: 2013-12-11
Genre: Mathematics
ISBN: 3642855709

Mathematics majors at Michigan State University take a "Capstone" course near the end of their undergraduate careers. The content of this course varies with each offering. Its purpose is to bring together different topics from the undergraduate curriculum and introduce students to a developing area in mathematics. This text was originally written for a Capstone course. Basic wavelet theory is a natural topic for such a course. By name, wavelets date back only to the 1980s. On the boundary between mathematics and engineering, wavelet theory shows students that mathematics research is still thriving, with important applications in areas such as image compression and the numerical solution of differential equations. The author believes that the essentials of wavelet theory are sufficiently elementary to be taught successfully to advanced undergraduates. This text is intended for undergraduates, so only a basic background in linear algebra and analysis is assumed. We do not require familiarity with complex numbers and the roots of unity.

Finite-Dimensional Vector Spaces

Finite-Dimensional Vector Spaces
Author: Paul R. Halmos
Publisher: Courier Dover Publications
Total Pages: 209
Release: 2017-05-24
Genre: Mathematics
ISBN: 0486822265

Classic, widely cited, and accessible treatment offers an ideal supplement to many traditional linear algebra texts. "Extremely well-written and logical, with short and elegant proofs." — MAA Reviews. 1958 edition.

Hilbert Space Operators

Hilbert Space Operators
Author: Carlos S. Kubrusly
Publisher: Springer Science & Business Media
Total Pages: 162
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461220645

This self-contained work on Hilbert space operators takes a problem-solving approach to the subject, combining theoretical results with a wide variety of exercises that range from the straightforward to the state-of-the-art. Complete solutions to all problems are provided. The text covers the basics of bounded linear operators on a Hilbert space and gradually progresses to more advanced topics in spectral theory and quasireducible operators. Written in a motivating and rigorous style, the work has few prerequisites beyond elementary functional analysis, and will appeal to graduate students and researchers in mathematics, physics, engineering, and related disciplines.