The Geometry of Iterated Loop Spaces
Author | : J.P. May |
Publisher | : Springer |
Total Pages | : 175 |
Release | : 1989-10-01 |
Genre | : Mathematics |
ISBN | : 9783540059042 |
Download An Infinite Loop Space Structure For K Theory Of Bimonoidal Categories full books in PDF, epub, and Kindle. Read online free An Infinite Loop Space Structure For K Theory Of Bimonoidal Categories ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : J.P. May |
Publisher | : Springer |
Total Pages | : 175 |
Release | : 1989-10-01 |
Genre | : Mathematics |
ISBN | : 9783540059042 |
Author | : John Frank Adams |
Publisher | : Princeton University Press |
Total Pages | : 232 |
Release | : 1978-09-21 |
Genre | : Mathematics |
ISBN | : 9780691082066 |
The theory of infinite loop spaces has been the center of much recent activity in algebraic topology. Frank Adams surveys this extensive work for researchers and students. Among the major topics covered are generalized cohomology theories and spectra; infinite-loop space machines in the sense of Boadman-Vogt, May, and Segal; localization and group completion; the transfer; the Adams conjecture and several proofs of it; and the recent theories of Adams and Priddy and of Madsen, Snaith, and Tornehave.
Author | : Charles A. Weibel |
Publisher | : American Mathematical Soc. |
Total Pages | : 634 |
Release | : 2013-06-13 |
Genre | : Mathematics |
ISBN | : 0821891324 |
Informally, $K$-theory is a tool for probing the structure of a mathematical object such as a ring or a topological space in terms of suitably parameterized vector spaces and producing important intrinsic invariants which are useful in the study of algebr
Author | : Bjørn Ian Dundas |
Publisher | : Springer Science & Business Media |
Total Pages | : 447 |
Release | : 2012-09-06 |
Genre | : Mathematics |
ISBN | : 1447143930 |
Algebraic K-theory encodes important invariants for several mathematical disciplines, spanning from geometric topology and functional analysis to number theory and algebraic geometry. As is commonly encountered, this powerful mathematical object is very hard to calculate. Apart from Quillen's calculations of finite fields and Suslin's calculation of algebraically closed fields, few complete calculations were available before the discovery of homological invariants offered by motivic cohomology and topological cyclic homology. This book covers the connection between algebraic K-theory and Bökstedt, Hsiang and Madsen's topological cyclic homology and proves that the difference between the theories are ‘locally constant’. The usefulness of this theorem stems from being more accessible for calculations than K-theory, and hence a single calculation of K-theory can be used with homological calculations to obtain a host of ‘nearby’ calculations in K-theory. For instance, Quillen's calculation of the K-theory of finite fields gives rise to Hesselholt and Madsen's calculations for local fields, and Voevodsky's calculations for the integers give insight into the diffeomorphisms of manifolds. In addition to the proof of the full integral version of the local correspondence between K-theory and topological cyclic homology, the book provides an introduction to the necessary background in algebraic K-theory and highly structured homotopy theory; collecting all necessary tools into one common framework. It relies on simplicial techniques, and contains an appendix summarizing the methods widely used in the field. The book is intended for graduate students and scientists interested in algebraic K-theory, and presupposes a basic knowledge of algebraic topology.
Author | : Donald Yau |
Publisher | : American Mathematical Society |
Total Pages | : 439 |
Release | : 2024-10-11 |
Genre | : Mathematics |
ISBN | : 1470478102 |
Bimonoidal categories are categorical analogues of rings without additive inverses. They have been actively studied in category theory, homotopy theory, and algebraic $K$-theory since around 1970. There is an abundance of new applications and questions of bimonoidal categories in mathematics and other sciences. The three books published by the AMS in the Mathematical Surveys and Monographs series under the title Bimonoidal Categories, $E_n$-Monoidal Categories, and Algebraic $K$-Theory (Volume I: Symmetric Bimonoidal Categories and Monoidal Bicategories, Volume II: Braided Bimonoidal Categories with Applications?this book, and Volume III: From Categories to Structured Ring Spectra) provide a unified treatment of bimonoidal and higher ring-like categories, their connection with algebraic $K$-theory and homotopy theory, and applications to quantum groups and topological quantum computation. With ample background material, extensive coverage, detailed presentation of both well-known and new theorems, and a list of open questions, this work is a user-friendly resource for beginners and experts alike. Part 1 of this book studies braided bimonoidal categories, with applications to quantum groups and topological quantum computation. It is proved that the categories of modules over a braided bialgebra, of Fibonacci anyons, and of Ising anyons form braided bimonoidal categories. Two coherence theorems for braided bimonoidal categories are proved, confirming the Blass-Gurevich Conjecture. The rest of this part discusses braided analogues of Baez's Conjecture and the monoidal bicategorical matrix construction in Volume I: Symmetric Bimonoidal Categories and Monoidal Bicategories. Part 2 studies ring and bipermutative categories in the sense of Elmendorf-Mandell, braided ring categories, and $E_n$-monoidal categories, which combine $n$-fold monoidal categories with ring categories.
Author | : Emilio Lluis-Puebla |
Publisher | : Springer |
Total Pages | : 172 |
Release | : 2006-11-14 |
Genre | : Mathematics |
ISBN | : 3540466398 |
This book is a general introduction to Higher Algebraic K-groups of rings and algebraic varieties, which were first defined by Quillen at the beginning of the 70's. These K-groups happen to be useful in many different fields, including topology, algebraic geometry, algebra and number theory. The goal of this volume is to provide graduate students, teachers and researchers with basic definitions, concepts and results, and to give a sampling of current directions of research. Written by five specialists of different parts of the subject, each set of lectures reflects the particular perspective ofits author. As such, this volume can serve as a primer (if not as a technical basic textbook) for mathematicians from many different fields of interest.
Author | : Gonçalo Tabuada |
Publisher | : American Mathematical Soc. |
Total Pages | : 127 |
Release | : 2015-09-21 |
Genre | : Mathematics |
ISBN | : 1470423979 |
The theory of motives began in the early 1960s when Grothendieck envisioned the existence of a "universal cohomology theory of algebraic varieties". The theory of noncommutative motives is more recent. It began in the 1980s when the Moscow school (Beilinson, Bondal, Kapranov, Manin, and others) began the study of algebraic varieties via their derived categories of coherent sheaves, and continued in the 2000s when Kontsevich conjectured the existence of a "universal invariant of noncommutative algebraic varieties". This book, prefaced by Yuri I. Manin, gives a rigorous overview of some of the main advances in the theory of noncommutative motives. It is divided into three main parts. The first part, which is of independent interest, is devoted to the study of DG categories from a homotopical viewpoint. The second part, written with an emphasis on examples and applications, covers the theory of noncommutative pure motives, noncommutative standard conjectures, noncommutative motivic Galois groups, and also the relations between these notions and their commutative counterparts. The last part is devoted to the theory of noncommutative mixed motives. The rigorous formalization of this latter theory requires the language of Grothendieck derivators, which, for the reader's convenience, is revised in a brief appendix.
Author | : Birgit Richter |
Publisher | : Cambridge University Press |
Total Pages | : 402 |
Release | : 2020-04-16 |
Genre | : Mathematics |
ISBN | : 1108847625 |
Category theory provides structure for the mathematical world and is seen everywhere in modern mathematics. With this book, the author bridges the gap between pure category theory and its numerous applications in homotopy theory, providing the necessary background information to make the subject accessible to graduate students or researchers with a background in algebraic topology and algebra. The reader is first introduced to category theory, starting with basic definitions and concepts before progressing to more advanced themes. Concrete examples and exercises illustrate the topics, ranging from colimits to constructions such as the Day convolution product. Part II covers important applications of category theory, giving a thorough introduction to simplicial objects including an account of quasi-categories and Segal sets. Diagram categories play a central role throughout the book, giving rise to models of iterated loop spaces, and feature prominently in functor homology and homology of small categories.
Author | : Eric Friedlander |
Publisher | : Springer Science & Business Media |
Total Pages | : 1148 |
Release | : 2005-07-18 |
Genre | : Mathematics |
ISBN | : 354023019X |
This handbook offers a compilation of techniques and results in K-theory. Each chapter is dedicated to a specific topic and is written by a leading expert. Many chapters present historical background; some present previously unpublished results, whereas some present the first expository account of a topic; many discuss future directions as well as open problems. It offers an exposition of our current state of knowledge as well as an implicit blueprint for future research.
Author | : Gregory Arone |
Publisher | : American Mathematical Soc. |
Total Pages | : 274 |
Release | : 2017-01-24 |
Genre | : Mathematics |
ISBN | : 1470417006 |
This volume contains the proceedings of the conference on Manifolds, -Theory, and Related Topics, held from June 23–27, 2014, in Dubrovnik, Croatia. The articles contained in this volume are a collection of research papers featuring recent advances in homotopy theory, -theory, and their applications to manifolds. Topics covered include homotopy and manifold calculus, structured spectra, and their applications to group theory and the geometry of manifolds. This volume is a tribute to the influence of Tom Goodwillie in these fields.