An Ergodic Ip Polynomial Szemeredi Theorem
Download An Ergodic Ip Polynomial Szemeredi Theorem full books in PDF, epub, and Kindle. Read online free An Ergodic Ip Polynomial Szemeredi Theorem ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Vitaly Bergelson |
Publisher | : American Mathematical Soc. |
Total Pages | : 121 |
Release | : 2000 |
Genre | : Mathematics |
ISBN | : 0821826573 |
The authors prove a polynomial multiple recurrence theorem for finitely many commuting measure preserving transformations of a probability space, extending a polynomial Szemerédi theorem appearing in [BL1]. The linear case is a consequence of an ergodic IP-Szemerédi theorem of Furstenberg and Katznelson ([FK2]). Several applications to the fine structure of recurrence in ergodic theory are given, some of which involve weakly mixing systems, for which we also prove a multiparameter weakly mixing polynomial ergodic theorem. The techniques and apparatus employed include a polynomialization of an IP structure theory developed in [FK2], an extension of Hindman's theorem due to Milliken and Taylor ([M], [T]), a polynomial version of the Hales-Jewett coloring theorem ([BL2]), and a theorem concerning limits of polynomially generated IP-systems of unitary operators ([BFM]).
Author | : Vitaly Bergelson |
Publisher | : |
Total Pages | : 106 |
Release | : 2014-09-11 |
Genre | : Measure-preserving transformations |
ISBN | : 9781470402860 |
Proves a polynomial multiple recurrence theorem for finitely, many commuting, measure-preserving transformations of a probability space, extending a polynomial Szemeredi theorem. Several applications to the structure of recurrence in ergodic theory are given, some of which involve weakly mixing systems, for which the authors also prove a multiparameter weakly mixing polynomial ergodic theorem. Techniques and apparatus employed include a polynomialization of an IP structure theory, an extension of Hindman's theorem due to Milliken and Taylor, a polynomial version of the Hales-Jewett coloring theorem, and a theorem concerning limits of polynomially generated IP systems of unitary operators. Author information is not given. Annotation copyrighted by Book News, Inc., Portland, OR.
Author | : Bernard Host |
Publisher | : American Mathematical Soc. |
Total Pages | : 442 |
Release | : 2018-12-12 |
Genre | : Mathematics |
ISBN | : 1470447800 |
Nilsystems play a key role in the structure theory of measure preserving systems, arising as the natural objects that describe the behavior of multiple ergodic averages. This book is a comprehensive treatment of their role in ergodic theory, covering development of the abstract theory leading to the structural statements, applications of these results, and connections to other fields. Starting with a summary of the relevant dynamical background, the book methodically develops the theory of cubic structures that give rise to nilpotent groups and reviews results on nilsystems and their properties that are scattered throughout the literature. These basic ingredients lay the groundwork for the ergodic structure theorems, and the book includes numerous formulations of these deep results, along with detailed proofs. The structure theorems have many applications, both in ergodic theory and in related fields; the book develops the connections to topological dynamics, combinatorics, and number theory, including an overview of the role of nilsystems in each of these areas. The final section is devoted to applications of the structure theory, covering numerous convergence and recurrence results. The book is aimed at graduate students and researchers in ergodic theory, along with those who work in the related areas of arithmetic combinatorics, harmonic analysis, and number theory.
Author | : Sergey Bezuglyi |
Publisher | : Cambridge University Press |
Total Pages | : 276 |
Release | : 2003-12-08 |
Genre | : Mathematics |
ISBN | : 9780521533652 |
This book contains a collection of survey papers by leading researchers in ergodic theory, low-dimensional and topological dynamics and it comprises nine chapters on a range of important topics. These include: the role and usefulness of ultrafilters in ergodic theory, topological dynamics and Ramsey theory; topological aspects of kneading theory together with an analogous 2-dimensional theory called pruning; the dynamics of Markov odometers, Bratteli-Vershik diagrams and orbit equivalence of non-singular automorphisms; geometric proofs of Mather's connecting and accelerating theorems; recent results in one dimensional smooth dynamics; periodic points of nonexpansive maps; arithmetic dynamics; the defect of factor maps; entropy theory for actions of countable amenable groups.
Author | : Vitaly Bergelson |
Publisher | : American Mathematical Soc. |
Total Pages | : 214 |
Release | : 2010 |
Genre | : Mathematics |
ISBN | : 082184833X |
Presents the state-of-the-art of applications in the whole spectrum of mathematics which are grounded on the use of ultrafilters and ultraproducts. It contains two general surveys on ultrafilters in set theory and on the ultraproduct construction, as well as papers that cover additive and combinatorial number theory, nonstandard methods and stochastic differential equations, measure theory, dynamics, Ramsey theory, algebra in the space of ultrafilters, and large cardinals.
Author | : Michael Brin |
Publisher | : Cambridge University Press |
Total Pages | : 490 |
Release | : 2004-08-16 |
Genre | : Mathematics |
ISBN | : 9780521840736 |
This volume presents a broad collection of current research by leading experts in the theory of dynamical systems.
Author | : A. Katok |
Publisher | : Elsevier |
Total Pages | : 1235 |
Release | : 2005-12-17 |
Genre | : Mathematics |
ISBN | : 0080478220 |
This second half of Volume 1 of this Handbook follows Volume 1A, which was published in 2002. The contents of these two tightly integrated parts taken together come close to a realization of the program formulated in the introductory survey "Principal Structures of Volume 1A.The present volume contains surveys on subjects in four areas of dynamical systems: Hyperbolic dynamics, parabolic dynamics, ergodic theory and infinite-dimensional dynamical systems (partial differential equations).. Written by experts in the field.. The coverage of ergodic theory in these two parts of Volume 1 is considerably more broad and thorough than that provided in other existing sources. . The final cluster of chapters discusses partial differential equations from the point of view of dynamical systems.
Author | : Robert A. Meyers |
Publisher | : Springer Science & Business Media |
Total Pages | : 1885 |
Release | : 2011-10-05 |
Genre | : Mathematics |
ISBN | : 1461418054 |
Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.
Author | : Tanja Eisner |
Publisher | : Springer |
Total Pages | : 630 |
Release | : 2015-11-18 |
Genre | : Mathematics |
ISBN | : 3319168983 |
Stunning recent results by Host–Kra, Green–Tao, and others, highlight the timeliness of this systematic introduction to classical ergodic theory using the tools of operator theory. Assuming no prior exposure to ergodic theory, this book provides a modern foundation for introductory courses on ergodic theory, especially for students or researchers with an interest in functional analysis. While basic analytic notions and results are reviewed in several appendices, more advanced operator theoretic topics are developed in detail, even beyond their immediate connection with ergodic theory. As a consequence, the book is also suitable for advanced or special-topic courses on functional analysis with applications to ergodic theory. Topics include: • an intuitive introduction to ergodic theory • an introduction to the basic notions, constructions, and standard examples of topological dynamical systems • Koopman operators, Banach lattices, lattice and algebra homomorphisms, and the Gelfand–Naimark theorem • measure-preserving dynamical systems • von Neumann’s Mean Ergodic Theorem and Birkhoff’s Pointwise Ergodic Theorem • strongly and weakly mixing systems • an examination of notions of isomorphism for measure-preserving systems • Markov operators, and the related concept of a factor of a measure preserving system • compact groups and semigroups, and a powerful tool in their study, the Jacobs–de Leeuw–Glicksberg decomposition • an introduction to the spectral theory of dynamical systems, the theorems of Furstenberg and Weiss on multiple recurrence, and applications of dynamical systems to combinatorics (theorems of van der Waerden, Gallai,and Hindman, Furstenberg’s Correspondence Principle, theorems of Roth and Furstenberg–Sárközy) Beyond its use in the classroom, Operator Theoretic Aspects of Ergodic Theory can serve as a valuable foundation for doing research at the intersection of ergodic theory and operator theory
Author | : |
Publisher | : World Scientific |
Total Pages | : 814 |
Release | : 2011 |
Genre | : |
ISBN | : 9814324353 |