An Elementary Investigation Of The Theory Of Numbers
Download An Elementary Investigation Of The Theory Of Numbers full books in PDF, epub, and Kindle. Read online free An Elementary Investigation Of The Theory Of Numbers ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : W. Sierpinski |
Publisher | : Elsevier |
Total Pages | : 527 |
Release | : 1988-02-01 |
Genre | : Mathematics |
ISBN | : 0080960197 |
Since the publication of the first edition of this work, considerable progress has been made in many of the questions examined. This edition has been updated and enlarged, and the bibliography has been revised.The variety of topics covered here includes divisibility, diophantine equations, prime numbers (especially Mersenne and Fermat primes), the basic arithmetic functions, congruences, the quadratic reciprocity law, expansion of real numbers into decimal fractions, decomposition of integers into sums of powers, some other problems of the additive theory of numbers and the theory of Gaussian integers.
Author | : Edward Wall |
Publisher | : McGraw-Hill Humanities/Social Sciences/Languages |
Total Pages | : 0 |
Release | : 2009-02-13 |
Genre | : Education |
ISBN | : 9780073378473 |
In response to concerns about teacher retention, especially among teachers in their first to fourth year in the classroom, we offer future teachers a series of brief guides full of practical advice that they can refer to in both their student teaching and in their first years on the job. Number Theory for Elementary School Teachers is designed for preservice candidates in early and/or elementary education. The text complements traditional Math Methods courses and provides deep content knowledge for prospective and first year teachers.
Author | : Joe Roberts |
Publisher | : MIT Press (MA) |
Total Pages | : 986 |
Release | : 1925 |
Genre | : Mathematics |
ISBN | : |
Author | : Gareth A. Jones |
Publisher | : Springer Science & Business Media |
Total Pages | : 305 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 144710613X |
An undergraduate-level introduction to number theory, with the emphasis on fully explained proofs and examples. Exercises, together with their solutions are integrated into the text, and the first few chapters assume only basic school algebra. Elementary ideas about groups and rings are then used to study groups of units, quadratic residues and arithmetic functions with applications to enumeration and cryptography. The final part, suitable for third-year students, uses ideas from algebra, analysis, calculus and geometry to study Dirichlet series and sums of squares. In particular, the last chapter gives a concise account of Fermat's Last Theorem, from its origin in the ancient Babylonian and Greek study of Pythagorean triples to its recent proof by Andrew Wiles.
Author | : Calvin T. Long |
Publisher | : D.C. Heath |
Total Pages | : 264 |
Release | : 1972 |
Genre | : Mathematics |
ISBN | : |
Author | : William Stein |
Publisher | : Springer Science & Business Media |
Total Pages | : 173 |
Release | : 2008-10-28 |
Genre | : Mathematics |
ISBN | : 0387855254 |
This is a book about prime numbers, congruences, secret messages, and elliptic curves that you can read cover to cover. It grew out of undergr- uate courses that the author taught at Harvard, UC San Diego, and the University of Washington. The systematic study of number theory was initiated around 300B. C. when Euclid proved that there are in?nitely many prime numbers, and also cleverly deduced the fundamental theorem of arithmetic, which asserts that every positive integer factors uniquely as a product of primes. Over a thousand years later (around 972A. D. ) Arab mathematicians formulated the congruent number problem that asks for a way to decide whether or not a given positive integer n is the area of a right triangle, all three of whose sides are rational numbers. Then another thousand years later (in 1976), Di?e and Hellman introduced the ?rst ever public-key cryptosystem, which enabled two people to communicate secretely over a public communications channel with no predetermined secret; this invention and the ones that followed it revolutionized the world of digital communication. In the 1980s and 1990s, elliptic curves revolutionized number theory, providing striking new insights into the congruent number problem, primality testing, publ- key cryptography, attacks on public-key systems, and playing a central role in Andrew Wiles’ resolution of Fermat’s Last Theorem.
Author | : James S. Kraft |
Publisher | : CRC Press |
Total Pages | : 412 |
Release | : 2014-11-24 |
Genre | : Mathematics |
ISBN | : 1498702686 |
Elementary Number Theory takes an accessible approach to teaching students about the role of number theory in pure mathematics and its important applications to cryptography and other areas. The first chapter of the book explains how to do proofs and includes a brief discussion of lemmas, propositions, theorems, and corollaries. The core of the text covers linear Diophantine equations; unique factorization; congruences; Fermat’s, Euler’s, and Wilson’s theorems; order and primitive roots; and quadratic reciprocity. The authors also discuss numerous cryptographic topics, such as RSA and discrete logarithms, along with recent developments. The book offers many pedagogical features. The "check your understanding" problems scattered throughout the chapters assess whether students have learned essential information. At the end of every chapter, exercises reinforce an understanding of the material. Other exercises introduce new and interesting ideas while computer exercises reflect the kinds of explorations that number theorists often carry out in their research.
Author | : C. D. Olds |
Publisher | : Cambridge University Press |
Total Pages | : 198 |
Release | : 2001-02-22 |
Genre | : Mathematics |
ISBN | : 9780883856437 |
A self-contained introduction to the geometry of numbers.
Author | : Ethan D. Bolker |
Publisher | : Courier Corporation |
Total Pages | : 208 |
Release | : 2012-06-14 |
Genre | : Mathematics |
ISBN | : 0486153096 |
This text uses the concepts usually taught in the first semester of a modern abstract algebra course to illuminate classical number theory: theorems on primitive roots, quadratic Diophantine equations, and more.
Author | : Marty Lewinter |
Publisher | : John Wiley & Sons |
Total Pages | : 240 |
Release | : 2015-06-02 |
Genre | : Mathematics |
ISBN | : 1119062764 |
A highly successful presentation of the fundamental concepts of number theory and computer programming Bridging an existing gap between mathematics and programming, Elementary Number Theory with Programming provides a unique introduction to elementary number theory with fundamental coverage of computer programming. Written by highly-qualified experts in the fields of computer science and mathematics, the book features accessible coverage for readers with various levels of experience and explores number theory in the context of programming without relying on advanced prerequisite knowledge and concepts in either area. Elementary Number Theory with Programming features comprehensive coverage of the methodology and applications of the most well-known theorems, problems, and concepts in number theory. Using standard mathematical applications within the programming field, the book presents modular arithmetic and prime decomposition, which are the basis of the public-private key system of cryptography. In addition, the book includes: Numerous examples, exercises, and research challenges in each chapter to encourage readers to work through the discussed concepts and ideas Select solutions to the chapter exercises in an appendix Plentiful sample computer programs to aid comprehension of the presented material for readers who have either never done any programming or need to improve their existing skill set A related website with links to select exercises An Instructor’s Solutions Manual available on a companion website Elementary Number Theory with Programming is a useful textbook for undergraduate and graduate-level students majoring in mathematics or computer science, as well as an excellent supplement for teachers and students who would like to better understand and appreciate number theory and computer programming. The book is also an ideal reference for computer scientists, programmers, and researchers interested in the mathematical applications of programming.