An Elementary Treatise on Fourier's Series and Spherical, Cylindric, and Ellipsoidal Harmonics

An Elementary Treatise on Fourier's Series and Spherical, Cylindric, and Ellipsoidal Harmonics
Author: William Elwood Byerly
Publisher: Cosimo, Inc.
Total Pages: 301
Release: 2007-01-01
Genre: Science
ISBN: 1602063052

First published in 1893, Byerly's classic treatise on Fourier's series and spherical, cylindrical, and ellipsoidal harmonics has been used in classrooms for well over a century. This practical exposition acts as a primer for fields such as wave mechanics, advanced engineering, and mathematical physics. Topics covered include: . development in trigonometric series . convergence on Fourier's series . solution of problems in physics by the aid of Fourier's integrals and Fourier's series . zonal harmonics . spherical harmonics . cylindrical harmonics (Bessel's functions) . and more. Containing 190 exercises and a helpful appendix, this reissue of Fourier's Series will be welcomed by students of higher mathematics everywhere. American mathematician WILLIAM ELWOOD BYERLY (1849-1935) also wrote Elements of Differential Calculus (1879) and Elements of Integral Calculus (1881).

CRC Concise Encyclopedia of Mathematics

CRC Concise Encyclopedia of Mathematics
Author: Eric W. Weisstein
Publisher: CRC Press
Total Pages: 3253
Release: 2002-12-12
Genre: Mathematics
ISBN: 1420035223

Upon publication, the first edition of the CRC Concise Encyclopedia of Mathematics received overwhelming accolades for its unparalleled scope, readability, and utility. It soon took its place among the top selling books in the history of Chapman & Hall/CRC, and its popularity continues unabated. Yet also unabated has been the d

Basic Partial Differential Equations

Basic Partial Differential Equations
Author: David. Bleecker
Publisher: CRC Press
Total Pages: 974
Release: 2018-01-18
Genre: Mathematics
ISBN: 1351086987

Methods of solution for partial differential equations (PDEs) used in mathematics, science, and engineering are clarified in this self-contained source. The reader will learn how to use PDEs to predict system behaviour from an initial state of the system and from external influences, and enhance the success of endeavours involving reasonably smooth, predictable changes of measurable quantities. This text enables the reader to not only find solutions of many PDEs, but also to interpret and use these solutions. It offers 6000 exercises ranging from routine to challenging. The palatable, motivated proofs enhance understanding and retention of the material. Topics not usually found in books at this level include but examined in this text: the application of linear and nonlinear first-order PDEs to the evolution of population densities and to traffic shocks convergence of numerical solutions of PDEs and implementation on a computer convergence of Laplace series on spheres quantum mechanics of the hydrogen atom solving PDEs on manifolds The text requires some knowledge of calculus but none on differential equations or linear algebra.