Amenability

Amenability
Author: Alan L. T. Paterson
Publisher: American Mathematical Soc.
Total Pages: 474
Release: 1988
Genre: Mathematics
ISBN: 0821809857

The subject of amenability has its roots in the work of Lebesgue at the turn of the century. In the 1940s, the subject began to shift from finitely additive measures to means. This shift is of fundamental importance, for it makes the substantial resources of functional analysis and abstract harmonic analysis available to the study of amenability. The ubiquity of amenability ideas and the depth of the mathematics involved points to the fundamental importance of the subject. This book presents a comprehensive and coherent account of amenability as it has been developed in the large and varied literature during this century. The book has a broad appeal, for it presents an account of the subject based on harmonic and functional analysis. In addition, the analytic techniques should be of considerable interest to analysts in all areas. In addition, the book contains applications of amenability to a number of areas: combinatorial group theory, semigroup theory, statistics, differential geometry, Lie groups, ergodic theory, cohomology, and operator algebras. The main objectives of the book are to provide an introduction to the subject as a whole and to go into many of its topics in some depth. The book begins with an informal, nontechnical account of amenability from its origins in the work of Lebesgue. The initial chapters establish the basic theory of amenability and provide a detailed treatment of invariant, finitely additive measures (i.e., invariant means) on locally compact groups. The author then discusses amenability for Lie groups, "almost invariant" properties of certain subsets of an amenable group, amenability and ergodic theorems, polynomial growth, and invariant mean cardinalities. Also included are detailed discussions of the two most important achievements in amenability in the 1980s: the solutions to von Neumann's conjecture and the Banach-Ruziewicz Problem. The main prerequisites for this book are a sound understanding of undergraduate-level mathematics and a knowledge of abstract harmonic analysis and functional analysis. The book is suitable for use in graduate courses, and the lists of problems in each chapter may be useful as student exercises.

Crossed Products of $C^*$-Algebras

Crossed Products of $C^*$-Algebras
Author: Dana P. Williams
Publisher: American Mathematical Soc.
Total Pages: 546
Release: 2007
Genre: Mathematics
ISBN: 0821842420

The theory of crossed products is extremely rich and intriguing. There are applications not only to operator algebras, but to subjects as varied as noncommutative geometry and mathematical physics. This book provides a detailed introduction to this vast subject suitable for graduate students and others whose research has contact with crossed product $C*$-algebras. in addition to providing the basic definitions and results, the main focus of this book is the fine ideal structure of crossed products as revealed by the study of induced representations via the Green-Mackey-Rieffel machine. in particular, there is an in-depth analysis of the imprimitivity theorems on which Rieffel's theory of induced representations and Morita equivalence of $C*$-algebras are based. There is also a detailed treatment of the generalized Effros-Hahn conjecture and its proof due to Gootman, Rosenberg, and Sauvageot. This book is meant to be self-contained and accessible to any graduate student coming out of a first course on operator algebras. There are appendices that deal with ancillary subjects, which while not central to the subject, are nevertheless crucial for a complete understanding of the material. Some of the appendices will be of independent interest. to view another book by this author, please visit Morita Equivalence and Continuous-Trace $C*$-Algebras.

Groupoids in Analysis, Geometry, and Physics

Groupoids in Analysis, Geometry, and Physics
Author: Arlan Ramsay
Publisher: American Mathematical Soc.
Total Pages: 208
Release: 2001
Genre: Mathematics
ISBN: 0821820427

Groupoids often occur when there is symmetry of a nature not expressible in terms of groups. Other uses of groupoids can involve something of a dynamical nature. Indeed, some of the main examples come from group actions. It should also be noted that in many situations where groupoids have been used, the main emphasis has not been on symmetry or dynamics issues. While the implicit symmetry and dynamics are relevant, the groupoid records mostly the structure of the space of leaves and the holonomy. More generally, the use of groupoids is very much related to various notions of orbit equivalance. This book presents the proceedings from the Joint Summer Research Conference on ``Groupoids in Analysis, Geometry, and Physics'' held in Boulder, CO. The book begins with an introduction to ways in which groupoids allow a more comprehensive view of symmetry than is seen via groups. Topics range from foliations, pseudo-differential operators, $KK$-theory, amenability, Fell bundles, and index theory to quantization of Poisson manifolds. Readers will find examples of important tools for working with groupoids. This book is geared to students and researchers. It is intended to improve their understanding of groupoids and to encourage them to look further while learning about the tools used.

Operator Algebras, Quantization, and Noncommutative Geometry

Operator Algebras, Quantization, and Noncommutative Geometry
Author: Robert S. Doran
Publisher: American Mathematical Soc.
Total Pages: 434
Release: 2004
Genre: Computers
ISBN: 0821834029

John von Neumann and Marshall Stone were two giants of Twentieth Century mathematics. In honor of the 100th anniversary of their births, a mathematical celebration was organized featuring developments in fields where both men were major influences. This volume contains articles from the AMS Special Session, Operator Algebras, Quantization and Noncommutative Geometry: A Centennial Celebration in Honor of John von Neumann and Marshall H. Stone. Papers range from expository and refereed and cover a broad range of mathematical topics reflecting the fundamental ideas of von Neumann and Stone. Most contributions are expanded versions of the talks and were written exclusively for this volume. Included, among Also featured is a reprint of P.R. Halmos's The Legend of John von Neumann. The book is suitable for graduate students and researchers interested in operator algebras and applications, including noncommutative geometry.

Fourier and Fourier-Stieltjes Algebras on Locally Compact Groups

Fourier and Fourier-Stieltjes Algebras on Locally Compact Groups
Author: Eberhard Kaniuth
Publisher: American Mathematical Soc.
Total Pages: 321
Release: 2018-07-05
Genre: Mathematics
ISBN: 0821853651

The theory of the Fourier algebra lies at the crossroads of several areas of analysis. Its roots are in locally compact groups and group representations, but it requires a considerable amount of functional analysis, mainly Banach algebras. In recent years it has made a major connection to the subject of operator spaces, to the enrichment of both. In this book two leading experts provide a road map to roughly 50 years of research detailing the role that the Fourier and Fourier-Stieltjes algebras have played in not only helping to better understand the nature of locally compact groups, but also in building bridges between abstract harmonic analysis, Banach algebras, and operator algebras. All of the important topics have been included, which makes this book a comprehensive survey of the field as it currently exists. Since the book is, in part, aimed at graduate students, the authors offer complete and readable proofs of all results. The book will be well received by the community in abstract harmonic analysis and will be particularly useful for doctoral and postdoctoral mathematicians conducting research in this important and vibrant area.

Induced Representations of Locally Compact Groups

Induced Representations of Locally Compact Groups
Author: Eberhard Kaniuth
Publisher: Cambridge University Press
Total Pages: 359
Release: 2013
Genre: Mathematics
ISBN: 052176226X

A comprehensive presentation of the theories of induced representations and Mackey analysis applied to a wide variety of groups.

Lectures on Amenability

Lectures on Amenability
Author: Volker Runde
Publisher: Springer
Total Pages: 302
Release: 2004-10-12
Genre: Mathematics
ISBN: 3540455604

The notion of amenability has its origins in the beginnings of modern measure theory: Does a finitely additive set function exist which is invariant under a certain group action? Since the 1940s, amenability has become an important concept in abstract harmonic analysis (or rather, more generally, in the theory of semitopological semigroups). In 1972, B.E. Johnson showed that the amenability of a locally compact group G can be characterized in terms of the Hochschild cohomology of its group algebra L^1(G): this initiated the theory of amenable Banach algebras. Since then, amenability has penetrated other branches of mathematics, such as von Neumann algebras, operator spaces, and even differential geometry. Lectures on Amenability introduces second year graduate students to this fascinating area of modern mathematics and leads them to a level from where they can go on to read original papers on the subject. Numerous exercises are interspersed in the text.

Analysis and Quantum Groups

Analysis and Quantum Groups
Author: Lars Tuset
Publisher: Springer Nature
Total Pages: 632
Release: 2022-07-27
Genre: Mathematics
ISBN: 3031072464

This volume presents a completely self-contained introduction to the elaborate theory of locally compact quantum groups, bringing the reader to the frontiers of present-day research. The exposition includes a substantial amount of material on functional analysis and operator algebras, subjects which in themselves have become increasingly important with the advent of quantum information theory. In particular, the rather unfamiliar modular theory of weights plays a crucial role in the theory, due to the presence of ‘Haar integrals’ on locally compact quantum groups, and is thus treated quite extensively The topics covered are developed independently, and each can serve either as a separate course in its own right or as part of a broader course on locally compact quantum groups. The second part of the book covers crossed products of coactions, their relation to subfactors and other types of natural products such as cocycle bicrossed products, quantum doubles and doublecrossed products. Induced corepresentations, Galois objects and deformations of coactions by cocycles are also treated. Each section is followed by a generous supply of exercises. To complete the book, an appendix is provided on topology, measure theory and complex function theory.

A Course in Abstract Harmonic Analysis

A Course in Abstract Harmonic Analysis
Author: Gerald B. Folland
Publisher: CRC Press
Total Pages: 317
Release: 2016-02-03
Genre: Mathematics
ISBN: 1498727158

A Course in Abstract Harmonic Analysis is an introduction to that part of analysis on locally compact groups that can be done with minimal assumptions on the nature of the group. As a generalization of classical Fourier analysis, this abstract theory creates a foundation for a great deal of modern analysis, and it contains a number of elegant resul