Algorithms Advances In Research And Application 2012 Edition
Download Algorithms Advances In Research And Application 2012 Edition full books in PDF, epub, and Kindle. Read online free Algorithms Advances In Research And Application 2012 Edition ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : |
Publisher | : ScholarlyEditions |
Total Pages | : 2152 |
Release | : 2012-12-26 |
Genre | : Computers |
ISBN | : 1464990611 |
Algorithms—Advances in Research and Application: 2012 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Algorithms. The editors have built Algorithms—Advances in Research and Application: 2012 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Algorithms in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Algorithms—Advances in Research and Application: 2012 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Author | : Ding-Zhu Du |
Publisher | : Springer Science & Business Media |
Total Pages | : 450 |
Release | : 2011-11-18 |
Genre | : Mathematics |
ISBN | : 1461417015 |
This book is intended to be used as a textbook for graduate students studying theoretical computer science. It can also be used as a reference book for researchers in the area of design and analysis of approximation algorithms. Design and Analysis of Approximation Algorithms is a graduate course in theoretical computer science taught widely in the universities, both in the United States and abroad. There are, however, very few textbooks available for this course. Among those available in the market, most books follow a problem-oriented format; that is, they collected many important combinatorial optimization problems and their approximation algorithms, and organized them based on the types, or applications, of problems, such as geometric-type problems, algebraic-type problems, etc. Such arrangement of materials is perhaps convenient for a researcher to look for the problems and algorithms related to his/her work, but is difficult for a student to capture the ideas underlying the various algorithms. In the new book proposed here, we follow a more structured, technique-oriented presentation. We organize approximation algorithms into different chapters, based on the design techniques for the algorithms, so that the reader can study approximation algorithms of the same nature together. It helps the reader to better understand the design and analysis techniques for approximation algorithms, and also helps the teacher to present the ideas and techniques of approximation algorithms in a more unified way.
Author | : Gabriel Luque |
Publisher | : Springer Science & Business Media |
Total Pages | : 173 |
Release | : 2011-06-15 |
Genre | : Computers |
ISBN | : 3642220835 |
This book is the result of several years of research trying to better characterize parallel genetic algorithms (pGAs) as a powerful tool for optimization, search, and learning. Readers can learn how to solve complex tasks by reducing their high computational times. Dealing with two scientific fields (parallelism and GAs) is always difficult, and the book seeks at gracefully introducing from basic concepts to advanced topics. The presentation is structured in three parts. The first one is targeted to the algorithms themselves, discussing their components, the physical parallelism, and best practices in using and evaluating them. A second part deals with the theory for pGAs, with an eye on theory-to-practice issues. A final third part offers a very wide study of pGAs as practical problem solvers, addressing domains such as natural language processing, circuits design, scheduling, and genomics. This volume will be helpful both for researchers and practitioners. The first part shows pGAs to either beginners and mature researchers looking for a unified view of the two fields: GAs and parallelism. The second part partially solves (and also opens) new investigation lines in theory of pGAs. The third part can be accessed independently for readers interested in applications. The result is an excellent source of information on the state of the art and future developments in parallel GAs.
Author | : Kim-Fung Man |
Publisher | : Springer Science & Business Media |
Total Pages | : 346 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 144710577X |
This comprehensive book gives a overview of the latest discussions in the application of genetic algorithms to solve engineering problems. Featuring real-world applications and an accompanying disk, giving the reader the opportunity to use an interactive genetic algorithms demonstration program.
Author | : Xinjie Yu |
Publisher | : Springer Science & Business Media |
Total Pages | : 427 |
Release | : 2010-06-10 |
Genre | : Computers |
ISBN | : 1849961298 |
Evolutionary algorithms are becoming increasingly attractive across various disciplines, such as operations research, computer science, industrial engineering, electrical engineering, social science and economics. Introduction to Evolutionary Algorithms presents an insightful, comprehensive, and up-to-date treatment of evolutionary algorithms. It covers such hot topics as: • genetic algorithms, • differential evolution, • swarm intelligence, and • artificial immune systems. The reader is introduced to a range of applications, as Introduction to Evolutionary Algorithms demonstrates how to model real world problems, how to encode and decode individuals, and how to design effective search operators according to the chromosome structures with examples of constraint optimization, multiobjective optimization, combinatorial optimization, and supervised/unsupervised learning. This emphasis on practical applications will benefit all students, whether they choose to continue their academic career or to enter a particular industry. Introduction to Evolutionary Algorithms is intended as a textbook or self-study material for both advanced undergraduates and graduate students. Additional features such as recommended further reading and ideas for research projects combine to form an accessible and interesting pedagogical approach to this widely used discipline.
Author | : Olympia Roeva |
Publisher | : BoD – Books on Demand |
Total Pages | : 379 |
Release | : 2012-03-07 |
Genre | : Computers |
ISBN | : 9535101463 |
The book addresses some of the most recent issues, with the theoretical and methodological aspects, of evolutionary multi-objective optimization problems and the various design challenges using different hybrid intelligent approaches. Multi-objective optimization has been available for about two decades, and its application in real-world problems is continuously increasing. Furthermore, many applications function more effectively using a hybrid systems approach. The book presents hybrid techniques based on Artificial Neural Network, Fuzzy Sets, Automata Theory, other metaheuristic or classical algorithms, etc. The book examines various examples of algorithms in different real-world application domains as graph growing problem, speech synthesis, traveling salesman problem, scheduling problems, antenna design, genes design, modeling of chemical and biochemical processes etc.
Author | : Rustem Popa |
Publisher | : BoD – Books on Demand |
Total Pages | : 332 |
Release | : 2012-03-21 |
Genre | : Computers |
ISBN | : 9535104004 |
Genetic Algorithms (GAs) are one of several techniques in the family of Evolutionary Algorithms - algorithms that search for solutions to optimization problems by "evolving" better and better solutions. Genetic Algorithms have been applied in science, engineering, business and social sciences. This book consists of 16 chapters organized into five sections. The first section deals with some applications in automatic control, the second section contains several applications in scheduling of resources, and the third section introduces some applications in electrical and electronics engineering. The next section illustrates some examples of character recognition and multi-criteria classification, and the last one deals with trading systems. These evolutionary techniques may be useful to engineers and scientists in various fields of specialization, who need some optimization techniques in their work and who may be using Genetic Algorithms in their applications for the first time. These applications may be useful to many other people who are getting familiar with the subject of Genetic Algorithms.
Author | : Oliver Kramer |
Publisher | : Springer |
Total Pages | : 94 |
Release | : 2017-01-07 |
Genre | : Technology & Engineering |
ISBN | : 331952156X |
This book introduces readers to genetic algorithms (GAs) with an emphasis on making the concepts, algorithms, and applications discussed as easy to understand as possible. Further, it avoids a great deal of formalisms and thus opens the subject to a broader audience in comparison to manuscripts overloaded by notations and equations. The book is divided into three parts, the first of which provides an introduction to GAs, starting with basic concepts like evolutionary operators and continuing with an overview of strategies for tuning and controlling parameters. In turn, the second part focuses on solution space variants like multimodal, constrained, and multi-objective solution spaces. Lastly, the third part briefly introduces theoretical tools for GAs, the intersections and hybridizations with machine learning, and highlights selected promising applications.
Author | : Zbigniew Michalewicz |
Publisher | : Springer Science & Business Media |
Total Pages | : 392 |
Release | : 2013-03-09 |
Genre | : Computers |
ISBN | : 3662033151 |
Genetic algorithms are founded upon the principle of evolution, i.e., survival of the fittest. Hence evolution programming techniques, based on genetic algorithms, are applicable to many hard optimization problems, such as optimization of functions with linear and nonlinear constraints, the traveling salesman problem, and problems of scheduling, partitioning, and control. The importance of these techniques is still growing, since evolution programs are parallel in nature, and parallelism is one of the most promising directions in computer science. The book is self-contained and the only prerequisite is basic undergraduate mathematics. This third edition has been substantially revised and extended by three new chapters and by additional appendices containing working material to cover recent developments and a change in the perception of evolutionary computation.
Author | : Tapan P. Bagchi |
Publisher | : Springer Science & Business Media |
Total Pages | : 384 |
Release | : 1999-08-31 |
Genre | : Business & Economics |
ISBN | : 9780792385615 |
Multiobjective Scheduling by Genetic Algorithms describes methods for developing multiobjective solutions to common production scheduling equations modeling in the literature as flowshops, job shops and open shops. The methodology is metaheuristic, one inspired by how nature has evolved a multitude of coexisting species of living beings on earth. Multiobjective flowshops, job shops and open shops are each highly relevant models in manufacturing, classroom scheduling or automotive assembly, yet for want of sound methods they have remained almost untouched to date. This text shows how methods such as Elitist Nondominated Sorting Genetic Algorithm (ENGA) can find a bevy of Pareto optimal solutions for them. Also it accents the value of hybridizing Gas with both solution-generating and solution-improvement methods. It envisions fundamental research into such methods, greatly strengthening the growing reach of metaheuristic methods. This book is therefore intended for students of industrial engineering, operations research, operations management and computer science, as well as practitioners. It may also assist in the development of efficient shop management software tools for schedulers and production planners who face multiple planning and operating objectives as a matter of course.