Algorithmic Trading

Algorithmic Trading
Author: Ernie Chan
Publisher: John Wiley & Sons
Total Pages: 230
Release: 2013-05-28
Genre: Business & Economics
ISBN: 1118460146

Praise for Algorithmic TRADING “Algorithmic Trading is an insightful book on quantitative trading written by a seasoned practitioner. What sets this book apart from many others in the space is the emphasis on real examples as opposed to just theory. Concepts are not only described, they are brought to life with actual trading strategies, which give the reader insight into how and why each strategy was developed, how it was implemented, and even how it was coded. This book is a valuable resource for anyone looking to create their own systematic trading strategies and those involved in manager selection, where the knowledge contained in this book will lead to a more informed and nuanced conversation with managers.” —DAREN SMITH, CFA, CAIA, FSA, Managing Director, Manager Selection & Portfolio Construction, University of Toronto Asset Management “Using an excellent selection of mean reversion and momentum strategies, Ernie explains the rationale behind each one, shows how to test it, how to improve it, and discusses implementation issues. His book is a careful, detailed exposition of the scientific method applied to strategy development. For serious retail traders, I know of no other book that provides this range of examples and level of detail. His discussions of how regime changes affect strategies, and of risk management, are invaluable bonuses.” —ROGER HUNTER, Mathematician and Algorithmic Trader

Hands-On Machine Learning for Algorithmic Trading

Hands-On Machine Learning for Algorithmic Trading
Author: Stefan Jansen
Publisher: Packt Publishing Ltd
Total Pages: 668
Release: 2018-12-31
Genre: Computers
ISBN: 1789342716

Explore effective trading strategies in real-world markets using NumPy, spaCy, pandas, scikit-learn, and Keras Key FeaturesImplement machine learning algorithms to build, train, and validate algorithmic modelsCreate your own algorithmic design process to apply probabilistic machine learning approaches to trading decisionsDevelop neural networks for algorithmic trading to perform time series forecasting and smart analyticsBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This book enables you to use a broad range of supervised and unsupervised algorithms to extract signals from a wide variety of data sources and create powerful investment strategies. This book shows how to access market, fundamental, and alternative data via API or web scraping and offers a framework to evaluate alternative data. You'll practice the ML workflow from model design, loss metric definition, and parameter tuning to performance evaluation in a time series context. You will understand ML algorithms such as Bayesian and ensemble methods and manifold learning, and will know how to train and tune these models using pandas, statsmodels, sklearn, PyMC3, xgboost, lightgbm, and catboost. This book also teaches you how to extract features from text data using spaCy, classify news and assign sentiment scores, and to use gensim to model topics and learn word embeddings from financial reports. You will also build and evaluate neural networks, including RNNs and CNNs, using Keras and PyTorch to exploit unstructured data for sophisticated strategies. Finally, you will apply transfer learning to satellite images to predict economic activity and use reinforcement learning to build agents that learn to trade in the OpenAI Gym. What you will learnImplement machine learning techniques to solve investment and trading problemsLeverage market, fundamental, and alternative data to research alpha factorsDesign and fine-tune supervised, unsupervised, and reinforcement learning modelsOptimize portfolio risk and performance using pandas, NumPy, and scikit-learnIntegrate machine learning models into a live trading strategy on QuantopianEvaluate strategies using reliable backtesting methodologies for time seriesDesign and evaluate deep neural networks using Keras, PyTorch, and TensorFlowWork with reinforcement learning for trading strategies in the OpenAI GymWho this book is for Hands-On Machine Learning for Algorithmic Trading is for data analysts, data scientists, and Python developers, as well as investment analysts and portfolio managers working within the finance and investment industry. If you want to perform efficient algorithmic trading by developing smart investigating strategies using machine learning algorithms, this is the book for you. Some understanding of Python and machine learning techniques is mandatory.

Python for Algorithmic Trading

Python for Algorithmic Trading
Author: Yves Hilpisch
Publisher: O'Reilly Media
Total Pages: 380
Release: 2020-11-12
Genre: Computers
ISBN: 1492053325

Algorithmic trading, once the exclusive domain of institutional players, is now open to small organizations and individual traders using online platforms. The tool of choice for many traders today is Python and its ecosystem of powerful packages. In this practical book, author Yves Hilpisch shows students, academics, and practitioners how to use Python in the fascinating field of algorithmic trading. You'll learn several ways to apply Python to different aspects of algorithmic trading, such as backtesting trading strategies and interacting with online trading platforms. Some of the biggest buy- and sell-side institutions make heavy use of Python. By exploring options for systematically building and deploying automated algorithmic trading strategies, this book will help you level the playing field. Set up a proper Python environment for algorithmic trading Learn how to retrieve financial data from public and proprietary data sources Explore vectorization for financial analytics with NumPy and pandas Master vectorized backtesting of different algorithmic trading strategies Generate market predictions by using machine learning and deep learning Tackle real-time processing of streaming data with socket programming tools Implement automated algorithmic trading strategies with the OANDA and FXCM trading platforms

Machine Learning for Algorithmic Trading

Machine Learning for Algorithmic Trading
Author: Stefan Jansen
Publisher: Packt Publishing Ltd
Total Pages: 822
Release: 2020-07-31
Genre: Business & Economics
ISBN: 1839216786

Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.

MACHINE LEARNING FOR ALGORITHMIC TRADING

MACHINE LEARNING FOR ALGORITHMIC TRADING
Author: Jason Test
Publisher:
Total Pages: 424
Release: 2020-11-20
Genre: Computers
ISBN: 9789918608003

Master the best methods for PYTHON. Learn how to programming as a pro and get positive ROI in 7 days with data science and machine learning Are you looking for a super-fast computer programming course? Would you like to learn the Python Programming Language in 7 days? Do you want to increase your trading thanks to the artificial intelligence? If so, keep reading: this bundle book is for you! Today, thanks to computer programming and PYTHON we can work with sophisticated machines that can study human behavior and identify underlying human behavioral patterns. Scientists can predict effectively what products and services consumers are interested in. You can also create various quantitative and algorithmic trading strategies using Python. It is getting increasingly challenging for traditional businesses to retain their customers without adopting one or more of the cutting-edge technology explained in this book. MACHINE LEARNING FOR ALGORITHM TRADING will introduce you many selected tips and breaking down the basics of coding applied to finance. You will discover as a beginner the world of data science, machine learning and artificial intelligence with step-by-step guides that will guide you during the code-writing learning process. The following list is just a tiny fraction of what you will learn in this bundle PYTHON FOR BEGINNERS ✅ Differences among programming languages: Vba, SQL, R, Python ✅ 3 reasons why Python is fundamental for Data Science ✅ Introduction to some Python libraries like NumPy, Pandas, Matplotlib, ✅ 3 step system why Python is fundamental for Data Science ✅Describe the steps required to develop and test an ML-driven trading strategy. PYTHON DATA SCIENCE ✅ A Proven Method to Write your First Program in 7 Days ✅ 3 Common Mistakes to Avoid when You Start Coding ✅ Fit Python Data Analysis to your business ✅ 7 Most effective Machine Learning Algorithms ✅ Describe the methods used to optimize an ML-driven trading strategy. OPTIONS TRADING FOR BEGINNERS ✅ Options Trading Strategies that guarantee real results in all market conditions ✅ Top 7 endorsed indicators of a successful investment ✅ The Bull & Bear Game ✅ Learn about the 3 best charts patterns to fluctuations of stock prices DAY AND SWING TRADING ✅ How Swing trading differs from Day trading in terms of risk-aversion ✅ How your money should be invested and which trade is more profitable ✅ Swing and Day trading proven indicators to learn investment timing ✅ The secret DAY trading strategies leading to a gain of $ 9,000 per month and more than $100,000 per year. Even if you have never written a programming code before, you will quickly grasp the basics thanks to visual charts and guidelines for coding. Today is the best day to start programming like a pro. For those trading with leverage, looking for a way to take a controlled approach and manage risk, a properly designed trading system is the answer If you really wish to learn MACHINE LEARNING FOR ALGORITHMIC TRADING and master its language, please click the BUY NOW button.

Building Winning Algorithmic Trading Systems, + Website

Building Winning Algorithmic Trading Systems, + Website
Author: Kevin J. Davey
Publisher: John Wiley & Sons
Total Pages: 294
Release: 2014-07-21
Genre: Business & Economics
ISBN: 1118778987

Develop your own trading system with practical guidance and expert advice In Building Algorithmic Trading Systems: A Trader's Journey From Data Mining to Monte Carlo Simulation to Live Training, award-winning trader Kevin Davey shares his secrets for developing trading systems that generate triple-digit returns. With both explanation and demonstration, Davey guides you step-by-step through the entire process of generating and validating an idea, setting entry and exit points, testing systems, and implementing them in live trading. You'll find concrete rules for increasing or decreasing allocation to a system, and rules for when to abandon one. The companion website includes Davey's own Monte Carlo simulator and other tools that will enable you to automate and test your own trading ideas. A purely discretionary approach to trading generally breaks down over the long haul. With market data and statistics easily available, traders are increasingly opting to employ an automated or algorithmic trading system—enough that algorithmic trades now account for the bulk of stock trading volume. Building Algorithmic Trading Systems teaches you how to develop your own systems with an eye toward market fluctuations and the impermanence of even the most effective algorithm. Learn the systems that generated triple-digit returns in the World Cup Trading Championship Develop an algorithmic approach for any trading idea using off-the-shelf software or popular platforms Test your new system using historical and current market data Mine market data for statistical tendencies that may form the basis of a new system Market patterns change, and so do system results. Past performance isn't a guarantee of future success, so the key is to continually develop new systems and adjust established systems in response to evolving statistical tendencies. For individual traders looking for the next leap forward, Building Algorithmic Trading Systems provides expert guidance and practical advice.

High-Frequency Trading

High-Frequency Trading
Author: Irene Aldridge
Publisher: John Wiley and Sons
Total Pages: 258
Release: 2009-12-22
Genre: Business & Economics
ISBN: 0470579773

A hands-on guide to the fast and ever-changing world of high-frequency, algorithmic trading Financial markets are undergoing rapid innovation due to the continuing proliferation of computer power and algorithms. These developments have created a new investment discipline called high-frequency trading. This book covers all aspects of high-frequency trading, from the business case and formulation of ideas through the development of trading systems to application of capital and subsequent performance evaluation. It also includes numerous quantitative trading strategies, with market microstructure, event arbitrage, and deviations arbitrage discussed in great detail. Contains the tools and techniques needed for building a high-frequency trading system Details the post-trade analysis process, including key performance benchmarks and trade quality evaluation Written by well-known industry professional Irene Aldridge Interest in high-frequency trading has exploded over the past year. This book has what you need to gain a better understanding of how it works and what it takes to apply this approach to your trading endeavors.

An Introduction to Algorithmic Trading

An Introduction to Algorithmic Trading
Author: Edward Leshik
Publisher: John Wiley & Sons
Total Pages: 273
Release: 2011-09-19
Genre: Business & Economics
ISBN: 1119975093

Interest in algorithmic trading is growing massively – it’s cheaper, faster and better to control than standard trading, it enables you to ‘pre-think’ the market, executing complex math in real time and take the required decisions based on the strategy defined. We are no longer limited by human ‘bandwidth’. The cost alone (estimated at 6 cents per share manual, 1 cent per share algorithmic) is a sufficient driver to power the growth of the industry. According to consultant firm, Aite Group LLC, high frequency trading firms alone account for 73% of all US equity trading volume, despite only representing approximately 2% of the total firms operating in the US markets. Algorithmic trading is becoming the industry lifeblood. But it is a secretive industry with few willing to share the secrets of their success. The book begins with a step-by-step guide to algorithmic trading, demystifying this complex subject and providing readers with a specific and usable algorithmic trading knowledge. It provides background information leading to more advanced work by outlining the current trading algorithms, the basics of their design, what they are, how they work, how they are used, their strengths, their weaknesses, where we are now and where we are going. The book then goes on to demonstrate a selection of detailed algorithms including their implementation in the markets. Using actual algorithms that have been used in live trading readers have access to real time trading functionality and can use the never before seen algorithms to trade their own accounts. The markets are complex adaptive systems exhibiting unpredictable behaviour. As the markets evolve algorithmic designers need to be constantly aware of any changes that may impact their work, so for the more adventurous reader there is also a section on how to design trading algorithms. All examples and algorithms are demonstrated in Excel on the accompanying CD ROM, including actual algorithmic examples which have been used in live trading.

Introduction To Algo Trading

Introduction To Algo Trading
Author: Kevin Davey
Publisher: Independently Published
Total Pages: 85
Release: 2018-05-08
Genre:
ISBN: 9781981038350

Are you interested in algorithmic trading, but unsure how to get started? Join best selling author and champion futures trader Kevin J. Davey as he introduces you to the world of retail algorithmic trading. In this book, you will find out if algo trading is for you, while learning the advantages and disadvantages involved.. You will also learn how to start algo trading on your own, how to select a trading platform and what is needed to develop simple trading strategies. Finally you will learn important tips for successful algo trading, along with a roadmap of next steps to take.

Algorithmic Trading

Algorithmic Trading
Author: Jeffrey Bacidore
Publisher:
Total Pages:
Release: 2021-02-16
Genre:
ISBN: 9780578862620

The book provides detailed coverage of?Single order algorithms, such as Volume-Weighted Average Price (VWAP), Time-Weighted-Average Price (TWAP), Percent of Volume (POV), and variants of the Implementation Shortfall algorithm. ?Multi-order algorithms, such as Pairs Trading and Portfolio Trading algorithms.?Smart routers, including "smart market", "smart limit", and dark aggregators.?Trading performance measurement, including trading benchmarks, "algo wheels", trading cost models, and other measurement issues.