Algorithmic Learning in a Random World

Algorithmic Learning in a Random World
Author: Vladimir Vovk
Publisher: Springer Science & Business Media
Total Pages: 344
Release: 2005-03-22
Genre: Computers
ISBN: 9780387001524

Algorithmic Learning in a Random World describes recent theoretical and experimental developments in building computable approximations to Kolmogorov's algorithmic notion of randomness. Based on these approximations, a new set of machine learning algorithms have been developed that can be used to make predictions and to estimate their confidence and credibility in high-dimensional spaces under the usual assumption that the data are independent and identically distributed (assumption of randomness). Another aim of this unique monograph is to outline some limits of predictions: The approach based on algorithmic theory of randomness allows for the proof of impossibility of prediction in certain situations. The book describes how several important machine learning problems, such as density estimation in high-dimensional spaces, cannot be solved if the only assumption is randomness.

Conformal Prediction for Reliable Machine Learning

Conformal Prediction for Reliable Machine Learning
Author: Vineeth Balasubramanian
Publisher: Newnes
Total Pages: 323
Release: 2014-04-23
Genre: Computers
ISBN: 0124017150

The conformal predictions framework is a recent development in machine learning that can associate a reliable measure of confidence with a prediction in any real-world pattern recognition application, including risk-sensitive applications such as medical diagnosis, face recognition, and financial risk prediction. Conformal Predictions for Reliable Machine Learning: Theory, Adaptations and Applications captures the basic theory of the framework, demonstrates how to apply it to real-world problems, and presents several adaptations, including active learning, change detection, and anomaly detection. As practitioners and researchers around the world apply and adapt the framework, this edited volume brings together these bodies of work, providing a springboard for further research as well as a handbook for application in real-world problems. - Understand the theoretical foundations of this important framework that can provide a reliable measure of confidence with predictions in machine learning - Be able to apply this framework to real-world problems in different machine learning settings, including classification, regression, and clustering - Learn effective ways of adapting the framework to newer problem settings, such as active learning, model selection, or change detection

The Constitution of Algorithms

The Constitution of Algorithms
Author: Florian Jaton
Publisher: MIT Press
Total Pages: 401
Release: 2021-04-27
Genre: Computers
ISBN: 0262542145

A laboratory study that investigates how algorithms come into existence. Algorithms--often associated with the terms big data, machine learning, or artificial intelligence--underlie the technologies we use every day, and disputes over the consequences, actual or potential, of new algorithms arise regularly. In this book, Florian Jaton offers a new way to study computerized methods, providing an account of where algorithms come from and how they are constituted, investigating the practical activities by which algorithms are progressively assembled rather than what they may suggest or require once they are assembled.

The Master Algorithm

The Master Algorithm
Author: Pedro Domingos
Publisher: Basic Books
Total Pages: 354
Release: 2015-09-22
Genre: Computers
ISBN: 0465061923

Recommended by Bill Gates A thought-provoking and wide-ranging exploration of machine learning and the race to build computer intelligences as flexible as our own In the world's top research labs and universities, the race is on to invent the ultimate learning algorithm: one capable of discovering any knowledge from data, and doing anything we want, before we even ask. In The Master Algorithm, Pedro Domingos lifts the veil to give us a peek inside the learning machines that power Google, Amazon, and your smartphone. He assembles a blueprint for the future universal learner--the Master Algorithm--and discusses what it will mean for business, science, and society. If data-ism is today's philosophy, this book is its bible.

Machine Learning

Machine Learning
Author: Stephen Marsland
Publisher: CRC Press
Total Pages: 407
Release: 2011-03-23
Genre: Business & Economics
ISBN: 1420067192

Traditional books on machine learning can be divided into two groups- those aimed at advanced undergraduates or early postgraduates with reasonable mathematical knowledge and those that are primers on how to code algorithms. The field is ready for a text that not only demonstrates how to use the algorithms that make up machine learning methods, but

Algorithmic Aspects of Machine Learning

Algorithmic Aspects of Machine Learning
Author: Ankur Moitra
Publisher: Cambridge University Press
Total Pages: 161
Release: 2018-09-27
Genre: Computers
ISBN: 1107184584

Introduces cutting-edge research on machine learning theory and practice, providing an accessible, modern algorithmic toolkit.

Conformal and Probabilistic Prediction with Applications

Conformal and Probabilistic Prediction with Applications
Author: Alexander Gammerman
Publisher: Springer
Total Pages: 235
Release: 2016-04-16
Genre: Computers
ISBN: 331933395X

This book constitutes the refereed proceedings of the 5th International Symposium on Conformal and Probabilistic Prediction with Applications, COPA 2016, held in Madrid, Spain, in April 2016. The 14 revised full papers presented together with 1 invited paper were carefully reviewed and selected from 23 submissions and cover topics on theory of conformal prediction; applications of conformal prediction; and machine learning.

Interpretable Machine Learning

Interpretable Machine Learning
Author: Christoph Molnar
Publisher: Lulu.com
Total Pages: 320
Release: 2020
Genre: Computers
ISBN: 0244768528

This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Artificial Unintelligence

Artificial Unintelligence
Author: Meredith Broussard
Publisher: MIT Press
Total Pages: 247
Release: 2019-01-29
Genre: Computers
ISBN: 026253701X

A guide to understanding the inner workings and outer limits of technology and why we should never assume that computers always get it right. In Artificial Unintelligence, Meredith Broussard argues that our collective enthusiasm for applying computer technology to every aspect of life has resulted in a tremendous amount of poorly designed systems. We are so eager to do everything digitally—hiring, driving, paying bills, even choosing romantic partners—that we have stopped demanding that our technology actually work. Broussard, a software developer and journalist, reminds us that there are fundamental limits to what we can (and should) do with technology. With this book, she offers a guide to understanding the inner workings and outer limits of technology—and issues a warning that we should never assume that computers always get things right. Making a case against technochauvinism—the belief that technology is always the solution—Broussard argues that it's just not true that social problems would inevitably retreat before a digitally enabled Utopia. To prove her point, she undertakes a series of adventures in computer programming. She goes for an alarming ride in a driverless car, concluding “the cyborg future is not coming any time soon”; uses artificial intelligence to investigate why students can't pass standardized tests; deploys machine learning to predict which passengers survived the Titanic disaster; and attempts to repair the U.S. campaign finance system by building AI software. If we understand the limits of what we can do with technology, Broussard tells us, we can make better choices about what we should do with it to make the world better for everyone.

Algorithms Are Not Enough

Algorithms Are Not Enough
Author: Herbert L. Roitblat
Publisher: MIT Press
Total Pages: 340
Release: 2020-10-13
Genre: Computers
ISBN: 0262044129

Why a new approach is needed in the quest for general artificial intelligence. Since the inception of artificial intelligence, we have been warned about the imminent arrival of computational systems that can replicate human thought processes. Before we know it, computers will become so intelligent that humans will be lucky to kept as pets. And yet, although artificial intelligence has become increasingly sophisticated—with such achievements as driverless cars and humanless chess-playing—computer science has not yet created general artificial intelligence. In Algorithms Are Not Enough, Herbert Roitblat explains how artificial general intelligence may be possible and why a robopocalypse is neither imminent, nor likely. Existing artificial intelligence, Roitblat shows, has been limited to solving path problems, in which the entire problem consists of navigating a path of choices—finding specific solutions to well-structured problems. Human problem-solving, on the other hand, includes problems that consist of ill-structured situations, including the design of problem-solving paths themselves. These are insight problems, and insight is an essential part of intelligence that has not been addressed by computer science. Roitblat draws on cognitive science, including psychology, philosophy, and history, to identify the essential features of intelligence needed to achieve general artificial intelligence. Roitblat describes current computational approaches to intelligence, including the Turing Test, machine learning, and neural networks. He identifies building blocks of natural intelligence, including perception, analogy, ambiguity, common sense, and creativity. General intelligence can create new representations to solve new problems, but current computational intelligence cannot. The human brain, like the computer, uses algorithms; but general intelligence, he argues, is more than algorithmic processes.