Algebras And Combinatorics
Download Algebras And Combinatorics full books in PDF, epub, and Kindle. Read online free Algebras And Combinatorics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Richard P. Stanley |
Publisher | : Springer Science & Business Media |
Total Pages | : 226 |
Release | : 2013-06-17 |
Genre | : Mathematics |
ISBN | : 1461469988 |
Written by one of the foremost experts in the field, Algebraic Combinatorics is a unique undergraduate textbook that will prepare the next generation of pure and applied mathematicians. The combination of the author’s extensive knowledge of combinatorics and classical and practical tools from algebra will inspire motivated students to delve deeply into the fascinating interplay between algebra and combinatorics. Readers will be able to apply their newfound knowledge to mathematical, engineering, and business models. The text is primarily intended for use in a one-semester advanced undergraduate course in algebraic combinatorics, enumerative combinatorics, or graph theory. Prerequisites include a basic knowledge of linear algebra over a field, existence of finite fields, and group theory. The topics in each chapter build on one another and include extensive problem sets as well as hints to selected exercises. Key topics include walks on graphs, cubes and the Radon transform, the Matrix–Tree Theorem, and the Sperner property. There are also three appendices on purely enumerative aspects of combinatorics related to the chapter material: the RSK algorithm, plane partitions, and the enumeration of labeled trees. Richard Stanley is currently professor of Applied Mathematics at the Massachusetts Institute of Technology. Stanley has received several awards including the George Polya Prize in applied combinatorics, the Guggenheim Fellowship, and the Leroy P. Steele Prize for mathematical exposition. Also by the author: Combinatorics and Commutative Algebra, Second Edition, © Birkhauser.
Author | : Ilijas Farah |
Publisher | : Springer Nature |
Total Pages | : 535 |
Release | : 2019-12-24 |
Genre | : Mathematics |
ISBN | : 3030270939 |
This book explores and highlights the fertile interaction between logic and operator algebras, which in recent years has led to the resolution of several long-standing open problems on C*-algebras. The interplay between logic and operator algebras (C*-algebras, in particular) is relatively young and the author is at the forefront of this interaction. The deep level of scholarship contained in these pages is evident and opens doors to operator algebraists interested in learning about the set-theoretic methods relevant to their field, as well as to set-theorists interested in expanding their view to the non-commutative realm of operator algebras. Enough background is included from both subjects to make the book a convenient, self-contained source for students. A fair number of the exercises form an integral part of the text. They are chosen to widen and deepen the material from the corresponding chapters. Some other exercises serve as a warmup for the latter chapters.
Author | : Richard P. Stanley |
Publisher | : Springer Science & Business Media |
Total Pages | : 173 |
Release | : 2004-10-15 |
Genre | : Mathematics |
ISBN | : 0817643699 |
* Stanley represents a broad perspective with respect to two significant topics from Combinatorial Commutative Algebra: 1) The theory of invariants of a torus acting linearly on a polynomial ring, and 2) The face ring of a simplicial complex * In this new edition, the author further develops some interesting properties of face rings with application to combinatorics
Author | : Francois Bergeron |
Publisher | : CRC Press |
Total Pages | : 227 |
Release | : 2009-07-06 |
Genre | : Mathematics |
ISBN | : 1439865078 |
Written for graduate students in mathematics or non-specialist mathematicians who wish to learn the basics about some of the most important current research in the field, this book provides an intensive, yet accessible, introduction to the subject of algebraic combinatorics. After recalling basic notions of combinatorics, representation theory, and
Author | : Ezra Miller |
Publisher | : Springer Science & Business Media |
Total Pages | : 442 |
Release | : 2005-06-21 |
Genre | : Mathematics |
ISBN | : 9780387237077 |
Recent developments are covered Contains over 100 figures and 250 exercises Includes complete proofs
Author | : Susan M. Cooper |
Publisher | : Springer |
Total Pages | : 328 |
Release | : 2014-05-16 |
Genre | : Mathematics |
ISBN | : 1493906267 |
Commutative algebra, combinatorics, and algebraic geometry are thriving areas of mathematical research with a rich history of interaction. Connections Between Algebra and Geometry contains lecture notes, along with exercises and solutions, from the Workshop on Connections Between Algebra and Geometry held at the University of Regina from May 29-June 1, 2012. It also contains research and survey papers from academics invited to participate in the companion Special Session on Interactions Between Algebraic Geometry and Commutative Algebra, which was part of the CMS Summer Meeting at the University of Regina held June 2–3, 2012, and the meeting Further Connections Between Algebra and Geometry, which was held at the North Dakota State University February 23, 2013. This volume highlights three mini-courses in the areas of commutative algebra and algebraic geometry: differential graded commutative algebra, secant varieties, and fat points and symbolic powers. It will serve as a useful resource for graduate students and researchers who wish to expand their knowledge of commutative algebra, algebraic geometry, combinatorics, and the intricacies of their intersection.
Author | : Bruce E. Sagan |
Publisher | : American Mathematical Soc. |
Total Pages | : 304 |
Release | : 2020-10-16 |
Genre | : Education |
ISBN | : 1470460327 |
This book is a gentle introduction to the enumerative part of combinatorics suitable for study at the advanced undergraduate or beginning graduate level. In addition to covering all the standard techniques for counting combinatorial objects, the text contains material from the research literature which has never before appeared in print, such as the use of quotient posets to study the Möbius function and characteristic polynomial of a partially ordered set, or the connection between quasisymmetric functions and pattern avoidance. The book assumes minimal background, and a first course in abstract algebra should suffice. The exposition is very reader friendly: keeping a moderate pace, using lots of examples, emphasizing recurring themes, and frankly expressing the delight the author takes in mathematics in general and combinatorics in particular.
Author | : Gregory G. Smith |
Publisher | : Springer |
Total Pages | : 391 |
Release | : 2017-11-17 |
Genre | : Mathematics |
ISBN | : 1493974866 |
This volume consolidates selected articles from the 2016 Apprenticeship Program at the Fields Institute, part of the larger program on Combinatorial Algebraic Geometry that ran from July through December of 2016. Written primarily by junior mathematicians, the articles cover a range of topics in combinatorial algebraic geometry including curves, surfaces, Grassmannians, convexity, abelian varieties, and moduli spaces. This book bridges the gap between graduate courses and cutting-edge research by connecting historical sources, computation, explicit examples, and new results.
Author | : Eiichi Bannai |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 303 |
Release | : 2021-02-22 |
Genre | : Mathematics |
ISBN | : 3110627736 |
This series is devoted to the publication of high-level monographs which cover the whole spectrum of current discrete mathematics and its applications in various fields. One of its main objectives is to make available to the professional community expositions of results and foundations of methods that play an important role in both the theory and applications of discrete mathematics. Contributions which are on the borderline of discrete mathematics and related fields and which stimulate further research at the crossroads of these areas are particularly welcome.
Author | : Edward A. Bender |
Publisher | : Courier Corporation |
Total Pages | : 789 |
Release | : 2013-01-18 |
Genre | : Mathematics |
ISBN | : 0486151506 |
This introduction to combinatorics, the foundation of the interaction between computer science and mathematics, is suitable for upper-level undergraduates and graduate students in engineering, science, and mathematics. The four-part treatment begins with a section on counting and listing that covers basic counting, functions, decision trees, and sieving methods. The following section addresses fundamental concepts in graph theory and a sampler of graph topics. The third part examines a variety of applications relevant to computer science and mathematics, including induction and recursion, sorting theory, and rooted plane trees. The final section, on generating functions, offers students a powerful tool for studying counting problems. Numerous exercises appear throughout the text, along with notes and references. The text concludes with solutions to odd-numbered exercises and to all appendix exercises.