Foundations of Algebraic Topology

Foundations of Algebraic Topology
Author: Samuel Eilenberg
Publisher: Princeton University Press
Total Pages: 345
Release: 2015-12-08
Genre: Mathematics
ISBN: 1400877490

The need for an axiomatic treatment of homology and cohomology theory has long been felt by topologists. Professors Eilenberg and Steenrod present here for the first time an axiomatization of the complete transition from topology to algebra. Originally published in 1952. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Algebraical and Topological Foundations of Geometry

Algebraical and Topological Foundations of Geometry
Author: Hans Freudenthal
Publisher: Elsevier
Total Pages: 217
Release: 2014-05-09
Genre: Mathematics
ISBN: 1483184641

Algebraical and Topological Foundations of Geometry contains the proceedings of the Colloquium on Algebraic and Topological Foundations of Geometry, held in Utrecht, the Netherlands in August 1959. The papers review the algebraical and topological foundations of geometry and cover topics ranging from the geometric algebra of the Möbius plane to the theory of parallels with applications to closed geodesies. Groups of homeomorphisms and topological descriptive planes are also discussed. Comprised of 26 chapters, this book introduces the reader to the theory of parallels with applications to closed geodesies; groups of homeomorphisms; complemented modular lattices; and topological descriptive planes. Subsequent chapters focus on collineation groups; exceptional algebras and exceptional groups; the connection between algebra and constructions with ruler and compasses; and the use of differential geometry and analytic group theory methods in foundations of geometry. Von Staudt projectivities of Moufang planes are also considered, and an axiomatic treatment of polar geometry is presented. This monograph will be of interest to students of mathematics.

Algebraic Geometry

Algebraic Geometry
Author: Robin Hartshorne
Publisher: Springer Science & Business Media
Total Pages: 511
Release: 2013-06-29
Genre: Mathematics
ISBN: 1475738498

An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.

Geometry and Topology of Manifolds: Surfaces and Beyond

Geometry and Topology of Manifolds: Surfaces and Beyond
Author: Vicente Muñoz
Publisher: American Mathematical Soc.
Total Pages: 408
Release: 2020-10-21
Genre: Education
ISBN: 1470461323

This book represents a novel approach to differential topology. Its main focus is to give a comprehensive introduction to the classification of manifolds, with special attention paid to the case of surfaces, for which the book provides a complete classification from many points of view: topological, smooth, constant curvature, complex, and conformal. Each chapter briefly revisits basic results usually known to graduate students from an alternative perspective, focusing on surfaces. We provide full proofs of some remarkable results that sometimes are missed in basic courses (e.g., the construction of triangulations on surfaces, the classification of surfaces, the Gauss-Bonnet theorem, the degree-genus formula for complex plane curves, the existence of constant curvature metrics on conformal surfaces), and we give hints to questions about higher dimensional manifolds. Many examples and remarks are scattered through the book. Each chapter ends with an exhaustive collection of problems and a list of topics for further study. The book is primarily addressed to graduate students who did take standard introductory courses on algebraic topology, differential and Riemannian geometry, or algebraic geometry, but have not seen their deep interconnections, which permeate a modern approach to geometry and topology of manifolds.

An Invitation to Algebraic Geometry

An Invitation to Algebraic Geometry
Author: Karen E. Smith
Publisher: Springer Science & Business Media
Total Pages: 173
Release: 2013-03-09
Genre: Mathematics
ISBN: 1475744978

This is a description of the underlying principles of algebraic geometry, some of its important developments in the twentieth century, and some of the problems that occupy its practitioners today. It is intended for the working or the aspiring mathematician who is unfamiliar with algebraic geometry but wishes to gain an appreciation of its foundations and its goals with a minimum of prerequisites. Few algebraic prerequisites are presumed beyond a basic course in linear algebra.

Introduction to Algebraic Geometry

Introduction to Algebraic Geometry
Author: Igor Kriz
Publisher: Springer Nature
Total Pages: 481
Release: 2021-03-13
Genre: Mathematics
ISBN: 303062644X

The goal of this book is to provide an introduction to algebraic geometry accessible to students. Starting from solutions of polynomial equations, modern tools of the subject soon appear, motivated by how they improve our understanding of geometrical concepts. In many places, analogies and differences with related mathematical areas are explained. The text approaches foundations of algebraic geometry in a complete and self-contained way, also covering the underlying algebra. The last two chapters include a comprehensive treatment of cohomology and discuss some of its applications in algebraic geometry.

A Concise Course in Algebraic Topology

A Concise Course in Algebraic Topology
Author: J. P. May
Publisher: University of Chicago Press
Total Pages: 262
Release: 1999-09
Genre: Mathematics
ISBN: 9780226511832

Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.

Undergraduate Algebraic Geometry

Undergraduate Algebraic Geometry
Author: Miles Reid
Publisher: Cambridge University Press
Total Pages: 144
Release: 1988-12-15
Genre: Mathematics
ISBN: 9780521356626

Algebraic geometry is, essentially, the study of the solution of equations and occupies a central position in pure mathematics. This short and readable introduction to algebraic geometry will be ideal for all undergraduate mathematicians coming to the subject for the first time. With the minimum of prerequisites, Dr Reid introduces the reader to the basic concepts of algebraic geometry including: plane conics, cubics and the group law, affine and projective varieties, and non-singularity and dimension. He is at pains to stress the connections the subject has with commutative algebra as well as its relation to topology, differential geometry, and number theory. The book arises from an undergraduate course given at the University of Warwick and contains numerous examples and exercises illustrating the theory.

Algebraic Geometry over the Complex Numbers

Algebraic Geometry over the Complex Numbers
Author: Donu Arapura
Publisher: Springer Science & Business Media
Total Pages: 326
Release: 2012-02-15
Genre: Mathematics
ISBN: 1461418097

This is a relatively fast paced graduate level introduction to complex algebraic geometry, from the basics to the frontier of the subject. It covers sheaf theory, cohomology, some Hodge theory, as well as some of the more algebraic aspects of algebraic geometry. The author frequently refers the reader if the treatment of a certain topic is readily available elsewhere but goes into considerable detail on topics for which his treatment puts a twist or a more transparent viewpoint. His cases of exploration and are chosen very carefully and deliberately. The textbook achieves its purpose of taking new students of complex algebraic geometry through this a deep yet broad introduction to a vast subject, eventually bringing them to the forefront of the topic via a non-intimidating style.

Complex Geometry

Complex Geometry
Author: Daniel Huybrechts
Publisher: Springer Science & Business Media
Total Pages: 336
Release: 2005
Genre: Computers
ISBN: 9783540212904

Easily accessible Includes recent developments Assumes very little knowledge of differentiable manifolds and functional analysis Particular emphasis on topics related to mirror symmetry (SUSY, Kaehler-Einstein metrics, Tian-Todorov lemma)