Algebraic Topology And Algebraic K Theory Am 113 Volume 113
Download Algebraic Topology And Algebraic K Theory Am 113 Volume 113 full books in PDF, epub, and Kindle. Read online free Algebraic Topology And Algebraic K Theory Am 113 Volume 113 ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : William Browder |
Publisher | : Princeton University Press |
Total Pages | : 577 |
Release | : 2016-03-02 |
Genre | : Mathematics |
ISBN | : 1400882117 |
This book contains accounts of talks held at a symposium in honor of John C. Moore in October 1983 at Princeton University, The work includes papers in classical homotopy theory, homological algebra, rational homotopy theory, algebraic K-theory of spaces, and other subjects.
Author | : William Browder |
Publisher | : Princeton University Press |
Total Pages | : 576 |
Release | : 1987-11-21 |
Genre | : Mathematics |
ISBN | : 0691084262 |
This book contains accounts of talks held at a symposium in honor of John C. Moore in October 1983 at Princeton University, The work includes papers in classical homotopy theory, homological algebra, rational homotopy theory, algebraic K-theory of spaces, and other subjects.
Author | : Bjørn Ian Dundas |
Publisher | : Springer Science & Business Media |
Total Pages | : 447 |
Release | : 2012-09-06 |
Genre | : Mathematics |
ISBN | : 1447143930 |
Algebraic K-theory encodes important invariants for several mathematical disciplines, spanning from geometric topology and functional analysis to number theory and algebraic geometry. As is commonly encountered, this powerful mathematical object is very hard to calculate. Apart from Quillen's calculations of finite fields and Suslin's calculation of algebraically closed fields, few complete calculations were available before the discovery of homological invariants offered by motivic cohomology and topological cyclic homology. This book covers the connection between algebraic K-theory and Bökstedt, Hsiang and Madsen's topological cyclic homology and proves that the difference between the theories are ‘locally constant’. The usefulness of this theorem stems from being more accessible for calculations than K-theory, and hence a single calculation of K-theory can be used with homological calculations to obtain a host of ‘nearby’ calculations in K-theory. For instance, Quillen's calculation of the K-theory of finite fields gives rise to Hesselholt and Madsen's calculations for local fields, and Voevodsky's calculations for the integers give insight into the diffeomorphisms of manifolds. In addition to the proof of the full integral version of the local correspondence between K-theory and topological cyclic homology, the book provides an introduction to the necessary background in algebraic K-theory and highly structured homotopy theory; collecting all necessary tools into one common framework. It relies on simplicial techniques, and contains an appendix summarizing the methods widely used in the field. The book is intended for graduate students and scientists interested in algebraic K-theory, and presupposes a basic knowledge of algebraic topology.
Author | : Sylvain Cappell |
Publisher | : Princeton University Press |
Total Pages | : 446 |
Release | : 2014-09-08 |
Genre | : Mathematics |
ISBN | : 1400865212 |
Surgery theory, the basis for the classification theory of manifolds, is now about forty years old. The sixtieth birthday (on December 14, 1996) of C.T.C. Wall, a leading member of the subject's founding generation, led the editors of this volume to reflect on the extraordinary accomplishments of surgery theory as well as its current enormously varied interactions with algebra, analysis, and geometry. Workers in many of these areas have often lamented the lack of a single source surveying surgery theory and its applications. Because no one person could write such a survey, the editors asked a variety of experts to report on the areas of current interest. This is the second of two volumes resulting from that collective effort. It will be useful to topologists, to other interested researchers, and to advanced students. The topics covered include current applications of surgery, Wall's finiteness obstruction, algebraic surgery, automorphisms and embeddings of manifolds, surgery theoretic methods for the study of group actions and stratified spaces, metrics of positive scalar curvature, and surgery in dimension four. In addition to the editors, the contributors are S. Ferry, M. Weiss, B. Williams, T. Goodwillie, J. Klein, S. Weinberger, B. Hughes, S. Stolz, R. Kirby, L. Taylor, and F. Quinn.
Author | : Nils Baas |
Publisher | : Springer Science & Business Media |
Total Pages | : 417 |
Release | : 2009-08-05 |
Genre | : Mathematics |
ISBN | : 3642012000 |
The 2007 Abel Symposium took place at the University of Oslo in August 2007. The goal of the symposium was to bring together mathematicians whose research efforts have led to recent advances in algebraic geometry, algebraic K-theory, algebraic topology, and mathematical physics. A common theme of this symposium was the development of new perspectives and new constructions with a categorical flavor. As the lectures at the symposium and the papers of this volume demonstrate, these perspectives and constructions have enabled a broadening of vistas, a synergy between once-differentiated subjects, and solutions to mathematical problems both old and new.
Author | : Scott Balchin |
Publisher | : Springer Nature |
Total Pages | : 326 |
Release | : 2021-10-29 |
Genre | : Mathematics |
ISBN | : 3030750353 |
This book outlines a vast array of techniques and methods regarding model categories, without focussing on the intricacies of the proofs. Quillen model categories are a fundamental tool for the understanding of homotopy theory. While many introductions to model categories fall back on the same handful of canonical examples, the present book highlights a large, self-contained collection of other examples which appear throughout the literature. In particular, it collects a highly scattered literature into a single volume. The book is aimed at anyone who uses, or is interested in using, model categories to study homotopy theory. It is written in such a way that it can be used as a reference guide for those who are already experts in the field. However, it can also be used as an introduction to the theory for novices.
Author | : Mahender Singh |
Publisher | : Springer |
Total Pages | : 318 |
Release | : 2019-02-02 |
Genre | : Mathematics |
ISBN | : 9811357420 |
This book highlights the latest advances in algebraic topology, from homotopy theory, braid groups, configuration spaces and toric topology, to transformation groups and the adjoining area of knot theory. It consists of well-written original research papers and survey articles by subject experts, most of which were presented at the “7th East Asian Conference on Algebraic Topology” held at the Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India, from December 1 to 6, 2017. Algebraic topology is a broad area of mathematics that has seen enormous developments over the past decade, and as such this book is a valuable resource for graduate students and researchers working in the field.
Author | : Edmond A. Jonckheere |
Publisher | : Oxford University Press, USA |
Total Pages | : 625 |
Release | : 1997 |
Genre | : Algebraic topology |
ISBN | : 0195093011 |
In this book, two seemingly unrelated fields - algebraic topology and robust control - are brought together. The book develops algebraic/differential topology proceeding from an easily motivated control engineering problem, showing the relevance of advanced topological concepts and reconstructing the fundamental concepts of algebraic/differential topology from an application-oriented point of view. It is suitable for graduate students in engineering and/or applied mathematics, and academic researchers.
Author | : Takeo Ohsawa |
Publisher | : Springer Nature |
Total Pages | : 438 |
Release | : 2020-03-18 |
Genre | : Mathematics |
ISBN | : 9811515883 |
This volume originated in the workshop held at Nagoya University, August 28–30, 2015, focusing on the surprising and mysterious Ohkawa's theorem: the Bousfield classes in the stable homotopy category SH form a set. An inspiring, extensive mathematical story can be narrated starting with Ohkawa's theorem, evolving naturally with a chain of motivational questions: Ohkawa's theorem states that the Bousfield classes of the stable homotopy category SH surprisingly forms a set, which is still very mysterious. Are there any toy models where analogous Bousfield classes form a set with a clear meaning? The fundamental theorem of Hopkins, Neeman, Thomason, and others states that the analogue of the Bousfield classes in the derived category of quasi-coherent sheaves Dqc(X) form a set with a clear algebro-geometric description. However, Hopkins was actually motivated not by Ohkawa's theorem but by his own theorem with Smith in the triangulated subcategory SHc, consisting of compact objects in SH. Now the following questions naturally occur: (1) Having theorems of Ohkawa and Hopkins-Smith in SH, are there analogues for the Morel-Voevodsky A1-stable homotopy category SH(k), which subsumes SH when k is a subfield of C?, (2) Was it not natural for Hopkins to have considered Dqc(X)c instead of Dqc(X)? However, whereas there is a conceptually simple algebro-geometrical interpretation Dqc(X)c = Dperf(X), it is its close relative Dbcoh(X) that traditionally, ever since Oka and Cartan, has been intensively studied because of its rich geometric and physical information. This book contains developments for the rest of the story and much more, including the chromatics homotopy theory, which the Hopkins–Smith theorem is based upon, and applications of Lurie's higher algebra, all by distinguished contributors.
Author | : Franc Forstnerič |
Publisher | : Springer |
Total Pages | : 569 |
Release | : 2017-09-05 |
Genre | : Mathematics |
ISBN | : 3319610589 |
This book, now in a carefully revised second edition, provides an up-to-date account of Oka theory, including the classical Oka-Grauert theory and the wide array of applications to the geometry of Stein manifolds. Oka theory is the field of complex analysis dealing with global problems on Stein manifolds which admit analytic solutions in the absence of topological obstructions. The exposition in the present volume focuses on the notion of an Oka manifold introduced by the author in 2009. It explores connections with elliptic complex geometry initiated by Gromov in 1989, with the Andersén-Lempert theory of holomorphic automorphisms of complex Euclidean spaces and of Stein manifolds with the density property, and with topological methods such as homotopy theory and the Seiberg-Witten theory. Researchers and graduate students interested in the homotopy principle in complex analysis will find this book particularly useful. It is currently the only work that offers a comprehensive introduction to both the Oka theory and the theory of holomorphic automorphisms of complex Euclidean spaces and of other complex manifolds with large automorphism groups.