Algebraic Properties Of Generalized Inverses
Download Algebraic Properties Of Generalized Inverses full books in PDF, epub, and Kindle. Read online free Algebraic Properties Of Generalized Inverses ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Stephen L. Campbell |
Publisher | : SIAM |
Total Pages | : 288 |
Release | : 2009-03-26 |
Genre | : Mathematics |
ISBN | : 0898716713 |
Provides comprehensive coverage of the mathematical theory of generalized inverses and a wide range of important and practical applications.
Author | : Dragana S. Cvetković‐Ilić |
Publisher | : Springer |
Total Pages | : 203 |
Release | : 2017-10-07 |
Genre | : Mathematics |
ISBN | : 9811063494 |
This book addresses selected topics in the theory of generalized inverses. Following a discussion of the “reverse order law” problem and certain problems involving completions of operator matrices, it subsequently presents a specific approach to solving the problem of the reverse order law for {1} -generalized inverses. Particular emphasis is placed on the existence of Drazin invertible completions of an upper triangular operator matrix; on the invertibility and different types of generalized invertibility of a linear combination of operators on Hilbert spaces and Banach algebra elements; on the problem of finding representations of the Drazin inverse of a 2x2 block matrix; and on selected additive results and algebraic properties for the Drazin inverse. In addition to the clarity of its content, the book discusses the relevant open problems for each topic discussed. Comments on the latest references on generalized inverses are also included. Accordingly, the book will be useful for graduate students, PhD students and researchers, but also for a broader readership interested in these topics.
Author | : Adi Ben-Israel |
Publisher | : Springer Science & Business Media |
Total Pages | : 433 |
Release | : 2006-04-18 |
Genre | : Mathematics |
ISBN | : 0387216340 |
This second edition accounts for many major developments in generalized inverses while maintaining the informal and leisurely style of the 1974 first edition. Added material includes a chapter on applications, new exercises, and an appendix on the work of E.H. Moore.
Author | : M. Zuhair Nashed |
Publisher | : Elsevier |
Total Pages | : 1069 |
Release | : 2014-05-10 |
Genre | : Mathematics |
ISBN | : 1483270297 |
Generalized Inverses and Applications, contains the proceedings of an Advanced Seminar on Generalized Inverses and Applications held at the University of Wisconsin-Madison on October 8-10, 1973 under the auspices of the university's Mathematics Research Center. The seminar provided a forum for discussing the basic theory of generalized inverses and their applications to analysis and operator equations. Numerical analysis and approximation methods are considered, along with applications to statistics and econometrics, optimization, system theory, and operations research. Comprised of 14 chapters, this book begins by describing a unified approach to generalized inverses of linear operators, with particular reference to algebraic, topological, extremal, and proximinal properties. The reader is then introduced to the algebraic aspects of the generalized inverse of a rectangular matrix; the Fredholm pseudoinverse; and perturbations and approximations for generalized inverses and linear operator equations. Subsequent chapters deal with various applications of generalized inverses, including programming, games, and networks, as well as estimation and aggregation in econometrics. This monograph will be of interest to mathematicians and students of mathematics.
Author | : Guorong Wang |
Publisher | : Springer |
Total Pages | : 390 |
Release | : 2018-05-12 |
Genre | : Mathematics |
ISBN | : 9811301468 |
This book begins with the fundamentals of the generalized inverses, then moves to more advanced topics. It presents a theoretical study of the generalization of Cramer's rule, determinant representations of the generalized inverses, reverse order law of the generalized inverses of a matrix product, structures of the generalized inverses of structured matrices, parallel computation of the generalized inverses, perturbation analysis of the generalized inverses, an algorithmic study of the computational methods for the full-rank factorization of a generalized inverse, generalized singular value decomposition, imbedding method, finite method, generalized inverses of polynomial matrices, and generalized inverses of linear operators. This book is intended for researchers, postdocs, and graduate students in the area of the generalized inverses with an undergraduate-level understanding of linear algebra.
Author | : K.P.S. Bhaskara Rao |
Publisher | : CRC Press |
Total Pages | : 192 |
Release | : 2002-03-21 |
Genre | : Mathematics |
ISBN | : 0203218876 |
The theory of generalized inverses of real or complex matrices has been expertly developed and documented. But the generalized inverses of matrices over rings have received comprehensive treatment only recently. In this book, the author, who contributed to the research and development of the theory, explains his results. He explores regular element
Author | : Dale L. Zimmerman |
Publisher | : Springer Nature |
Total Pages | : 504 |
Release | : 2020-11-02 |
Genre | : Mathematics |
ISBN | : 3030520633 |
This textbook presents a unified and rigorous approach to best linear unbiased estimation and prediction of parameters and random quantities in linear models, as well as other theory upon which much of the statistical methodology associated with linear models is based. The single most unique feature of the book is that each major concept or result is illustrated with one or more concrete examples or special cases. Commonly used methodologies based on the theory are presented in methodological interludes scattered throughout the book, along with a wealth of exercises that will benefit students and instructors alike. Generalized inverses are used throughout, so that the model matrix and various other matrices are not required to have full rank. Considerably more emphasis is given to estimability, partitioned analyses of variance, constrained least squares, effects of model misspecification, and most especially prediction than in many other textbooks on linear models. This book is intended for master and PhD students with a basic grasp of statistical theory, matrix algebra and applied regression analysis, and for instructors of linear models courses. Solutions to the book’s exercises are available in the companion volume Linear Model Theory - Exercises and Solutions by the same author.
Author | : James E. Gentle |
Publisher | : Springer Science & Business Media |
Total Pages | : 536 |
Release | : 2007-07-27 |
Genre | : Computers |
ISBN | : 0387708723 |
Matrix algebra is one of the most important areas of mathematics for data analysis and for statistical theory. This much-needed work presents the relevant aspects of the theory of matrix algebra for applications in statistics. It moves on to consider the various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes the special properties of those matrices. Finally, it covers numerical linear algebra, beginning with a discussion of the basics of numerical computations, and following up with accurate and efficient algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors.
Author | : SUDDHENDU BISWAS |
Publisher | : PHI Learning Pvt. Ltd. |
Total Pages | : 454 |
Release | : 2012-08-07 |
Genre | : Mathematics |
ISBN | : 8120346238 |
Intended as a text for postgraduate and undergraduate honours students of Statistics, Mathematics, Operations Research as well as students in various branches of Engineering, this student-friendly book gives an indepth analysis of Matrix Algebra and all the major topics related to it. Divided into 12 chapters, the book begins with a discussion on Elements of Matrix Theory and Some Special Matrices. Then it goes on to give a detailed discussion on Scalar Function and Inverse of a Matrix, Rank of a Matrix, Generalized Inverse of a Matrix, and Quadric Forms and Inequalities. The book concludes by giving Some Applications of Algebra of Matrices, Matrices in the Infinite Dimensional Vector Space, and Computational Tracts in Matrices. KEY FEATURES Gives a large number of both solved and unsolved problems of Elementary Matrix. Provides an exhaustive treatment of Generalized Inverse Matrix with many applications in Statistics. Devotes one chapter exclusively to application of Matrices. Provides one full chapter on Matrices in the Infinite Dimensional Vector Space, which will be quite useful for postgraduate students. Gives an Appendix on R Software which will be extremely useful for students of Statistics. Provides Question Bank which will greatly benefit both undergraduate and postgraduate students. This book, which beautifully blends both theory and applications of Matrix Algebra, should prove to be an invaluable text for the students.
Author | : Haruo Yanai |
Publisher | : Springer Science & Business Media |
Total Pages | : 244 |
Release | : 2011-04-06 |
Genre | : Mathematics |
ISBN | : 144199887X |
Aside from distribution theory, projections and the singular value decomposition (SVD) are the two most important concepts for understanding the basic mechanism of multivariate analysis. The former underlies the least squares estimation in regression analysis, which is essentially a projection of one subspace onto another, and the latter underlies principal component analysis, which seeks to find a subspace that captures the largest variability in the original space. This book is about projections and SVD. A thorough discussion of generalized inverse (g-inverse) matrices is also given because it is closely related to the former. The book provides systematic and in-depth accounts of these concepts from a unified viewpoint of linear transformations finite dimensional vector spaces. More specially, it shows that projection matrices (projectors) and g-inverse matrices can be defined in various ways so that a vector space is decomposed into a direct-sum of (disjoint) subspaces. Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition will be useful for researchers, practitioners, and students in applied mathematics, statistics, engineering, behaviormetrics, and other fields.